143 research outputs found

    SIP1 is downregulated in hepatocellular carcinoma by promoter hypermethylation

    Get PDF
    Background: Smad interacting protein-1 is a transcription factor that is implicated in transforming growth factor-β/bone morphogenetic protein signaling and a repressor of E-cadherin and human telomerase reverse transcriptase. It is also involved in epithelial-mesenchymal transition and tumorigenesis. However, genetic and epigenetic alterations of SIP1 have not been fully elucidated in cancers. In this study, we investigated mutations and promoter hypermethylation of the SIP1 gene in human hepatocellular carcinomas.Methods: SIP1 expression was analyzed in HCC cell lines and primary tumors in comparison to normal and non-tumor liver tissues by using semi-quantitative RT-PCR, quantitative real-time RT-PCR and immunohistochemistry. Mutation and deletion screening of the SIP1 gene were performed by direct sequencing in HCC-derived cells. Restoration of SIP1 expression was sought by treating HCC cell lines with the DNA methyl transferase inhibitor, 5-AzaC, and the histone deacetylase inhibitor, TSA. SIP1 promoter methylation was analyzed by the combined bisulfite restriction analysis assay in in silico-predicted putative promoter and CpG island regions.Results: We found that the expression of SIP1 was completely lost or reduced in five of 14 (36%) HCC cell lines and 17 of 23 (74%) primary HCC tumors. Immunohistochemical analysis confirmed that SIP1 mRNA downregulation was associated with decreased expression of the SIP1 protein in HCC tissues (82.8%). No somatic mutation was observed in SIP1 exons in any of the 14 HCC cell lines. Combined treatment with DNA methyl transferase and histone deacetylase inhibitors synergistically restored SIP1 expression in SIP1-negative cell lines. Analysis of three putative gene regulatory regions revealed tumor-specific methylation in more than half of the HCC cases.Conclusions: Epigenetic mechanisms contribute significantly to the downregulation of SIP1 expression in HCC. This finding adds a new level of complexity to the role of SIP1 in hepatocarcinogenesis. © 2011 Acun et al; licensee BioMed Central Ltd

    Thin film MoS2 nanocrystal based ultraviolet photodetector

    Get PDF
    Cataloged from PDF version of article.We report on the development of UV range photodetector based on molybdenum disulfide nanocrystals (MoS2-NCs). The inorganic MoS2-NCs are produced by pulsed laser ablation technique in deionized water and the colloidal MoS2-NCs are characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and UV/VIS absorption measurements. The photoresponse studies indicate that the fabricated MoS2-NCs photodetector (MoS2-NCs PD) operates well within 300-400 nm UV range, with diminishing response at visible wavelengths, due to the MoS2-NCs absorption characteristics. The structural and the optical properties of laser generated MoS2-NCs suggest promising applications in the field of photonics and optoelectronics. (C) 2012 Optical Society of Americ

    Novel monoclonal antibodies detect Smad-Interacting Protein 1 (SIP1) in the cytoplasm of human cells from multiple tumor tissue arrays

    Get PDF
    Cataloged from PDF version of article.Smad-interacting protein 1 (SIP1, also known as ZEB2) represses the transcription of E-cadherin and mediates epithelial-mesenchymal transition in development and tumor metastasis. Due to the lack of human SIP1-specific antibodies, its expression in human tumor tissues has not been studied in detail by immunohistochemistry. Hence, we generated two anti-SIP1 monoclonal antibodies, clones 1C6 and 6E5, with IgG1 and IgG2a isotypes, respectively. The specificity of these antibodies was shown by Western blotting studies using siRNA mediated downregulation of SIP1 and ZEB1 in a human osteosarcoma cell line. In the same context, we also compared them with 5 commercially available SIP1 antibodies. Antibody specificity was further verified in an inducible cell line system by immunofluorescence. By using both antibodies, we evaluated the tissue expression of SIP1 in paraffin-embedded tissue microarrays consisting of 22 normal and 101 tumoral tissues of kidney, colon, stomach, lung, esophagus, uterus, rectum, breast and liver. Interestingly, SIP1 predominantly displayed a cytoplasmic expression, while the nuclear localization of SIP1 was observed in only 6 cases. Strong expression of SIP1 was found in distal tubules of kidney, glandular epithelial cells of stomach and hepatocytes, implicating a co-expression of SIP1 and E-cadherin. Squamous epithelium of the esophagus and surface epithelium of colon and rectum were stained with moderate to weak intensity. Normal uterus, breast and lung tissues remained completely negative. By comparison with their normal tissues, we observed SIP1 overexpression in cancers of the kidney, breast, lung and uterus. However, SIP1 expression was found to be downregulated in tumors from colon, rectum, esophagus, liver and stomach tissues. Finally we did nuclear/cytoplasmic fractionation in 3 carcinoma cell lines and detected SIP1 in both fractions, nucleus being the dominant one. To our best knowledge, this is the first comprehensive immunohistochemical study of the expression of SIP1 in a series of human cancers. Our finding that SIP1 is not exclusively localized to nucleus suggests that the subcellular localization of SIP1 is regulated in normal and tumor tissues. These novel monoclonal antibodies may help elucidate the role of SIP1 in tumor development. © 2010 Elsevier Inc

    Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment

    Get PDF
    Two-dimensional MoS2 nanosheets (2D MoS2 NS) and fullerene-like MoS2 nanostructures (3D MoS2 NS) with varying sizes are synthesized by nanosecond laser ablation of hexagonal crystalline 2H-MoS2 powder in organic solution (methanol). Structural, chemical, and optical properties of MoS2 NS are characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman and UV-vis-near infrared absorption spectroscopy techniques. Results of the structural analysis show that the obtained MoS2 NS mainly present a layered morphology from micrometer to nanometer sized surface area. Detailed analysis of the product also proves the existence of inorganic polyhedral fullerene-like 3D MoS2 NS generated by pulsed laser ablation in methanol. The possible factors which may lead to formation of both 2D and 3D MoS2 NS in methanol are examined by ab initio calculations and shown to correlate with vacancy formation. The hexagonal crystalline structure of MoS2 NS was determined by XRD analysis. In Raman spectroscopy, the peaks at 380.33 and 405.79 cm-1 corresponding to the E1 2g and A1g phonon modes of MoS2 were clearly observed. The colloidal MoS2 NS solution presents broadband absorption edge tailoring from the UV region to the NIR region. Investigations of MoS2 NS show that the one-step physical process of pulsed laser ablation-bulk MoS2 powder interaction in organic solution opens doors to the formation of two scaled micrometer- and nanometer-sized layered and fullerene-like morphology MoS2 structures. © 2014 American Chemical Society

    PTPRD is homozygously deleted and epigenetically downregulated in human hepatocellular carcinomas

    Get PDF
    PTPRD (protein tyrosine phosphatase, receptor type, D) is a tumor suppressor gene, frequently inactivated through deletions or epigenetic mechanisms in several cancers with importance for global health. In this study, we provide new and functionally integrated evidence on genetic and epigenetic alterations of PTPRD gene in hepatocellular carcinomas (HCCs). Importantly, HCC is the sixth most common malignancy and the third most common cause of cancer-related mortality worldwide. We used a high throughput single nucleotide polymorphism (SNP) microarray assay (Affymetrix, 10K2.0 Assay) covering the whole genome to screen an extensive panel of HCC cell lines (N=14 in total) to detect DNA copy number changes. PTPRD expression was determined in human HCCs by Q-RT-PCR and immunohistochemistry. Promoter hypermethylation was assessed by combined bisulfite restriction analysis (COBRA). DNA methyl transferase inhibitor 5-azacytidine (5-AzaC) and/or histone deacetylase inhibitor Trichostain A (TSA) were used to restore the expression. We identified homozygous deletions in Mahlavu and SNU475 cells, in the 5′UTR and coding regions, respectively. PTPRD mRNA expression was downregulated in 78.5% of cell lines and 82.6% of primary HCCs. PTPRD protein expression was also found to be lost or reduced in HCC tumor tissues. We found promoter hypermethylation in 22.2% of the paired HCC samples and restored PTPRD expression by 5-AzaC and/or TSA treatments. In conclusion, PTPRD is homozygously deleted and epigenetically downregulated in HCCs. We hypothesize PTPRD as a tumor suppressor candidate and potential cancer biomarker in human HCCs. This hypothesis is consistent with compelling evidences in other organ systems, as discussed in this article. Further functional assays in larger samples may ascertain the contribution of PTPRD to hepatocarcinogenesis in greater detail, not to forget its broader importance for diagnostic medicine and the emerging field of personalized medicine in oncology. © Copyright 2015, Mary Ann Liebert, Inc. 2015

    Immunization with UV-induced apoptotic cells generates monoclonal antibodies against proteins differentially expressed in hepatocellular carcinoma cell lines

    Get PDF
    Early and differential diagnosis of hepatocellular carcinoma (HCC) requires sensitive and specific tissue and serum markers. On the other hand, proteins involved in tumorigenesis are extensively modelated on exposure to apoptotic stimuli, including ultraviolet (UVC) irradiation. Hence, we generated monoclonal antibodies by using UVC-irradiated apoptotic cells of an HCC cell line, HUH7, aiming to explore proteins differentially expressed in tumors and apoptosis. We obtained 18 hybridoma clones recognizing protein targets in apoptotic HUH7 cells, and clone 6D5 was chosen for characterization studies because of its strong reactivity in cell-ELISA assay. Subtype of the antibody was IgG3 (κ). Targets of 6D5 antibody were found to be abundantly expressed in all HCC cell lines except FLC4, which resembles normal hepatocytes. We also observed the secretion of 6D5 ligands by some of the HCC cell lines. Moreover, cellular proteins recognized by the antibody displayed a late upregulation in UVC-induced apoptotic cells. We concluded that 6D5 target proteins are modulated in liver tumorigenesis and apoptotic processes. We therefore propose the validation of our antibody in tissue and serum samples of HCC patients to assess its potential use for the early diagnosis of HCC and to understand the role of 6D5 ligands in liver carcinogenesis. © Mary Ann Liebert, Inc

    Overexpression of ZEB2 in Peritumoral Liver Tissue Correlates with Favorable Survival after Curative Resection of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: ZEB2 has been suggested to mediate EMT and disease aggressiveness in several types of human cancers. However, the expression patterns of ZEB2 in hepatocellular carcinoma (HCC) and its effect on prognosis of HCC patients treated with hepatectomy are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the methods of tissue microarray and immunohistochemistry (IHC) were utilized to investigate ZEB2 expression in HCC and peritumoral liver tissue (PLT). Receiver operating characteristic (ROC), spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Up-regulated expression of cytoplasmic/nuclear ZEB2 protein was observed in the majority of PLTs, when compared to HCCs. Further analysis showed that overexpression of cytoplasmic ZEB2 in HCCs was inversely correlated with AFP level, tumor size and differentiation (P<0.05). Also, overexpression of cytoplasmic ZEB2 in PLTs correlated with lower AFP level (P<0.05). In univariate survival analysis, a significant association between overexpression of cytoplasmic ZEB2 by HCCs/PLTs and longer patients' survival was found (P<0.05). Importantly, cytoplasmic ZEB2 expression in PLTs was evaluated as an independent prognostic factor in multivariate analysis (P<0.05). Consequently, a new clinicopathologic prognostic model with cytoplasmic ZEB2 expression (including HCCs and PLTs) was constructed. The model could significantly stratify risk (low, intermediate and high) for overall survival (P = 0.002). CONCLUSIONS/SIGNIFICANCE: Our findings provide a basis for the concept that cytoplasmic ZEB2 expressed by PLTs can predict the postoperative survival of patients with HCC. The combined cytoplasmic ZEB2 prognostic model may become a useful tool for identifying patients with different clinical outcomes

    The militarisation of English schools: Troops to Teaching and the implications for Initial Teacher Education and race equality

    Get PDF
    This article considers the implications of the Troops to Teaching (TtT) programme, to be introduced in England in autumn 2013, for Initial Teacher Education (ITE) and race equality. TtT will fast-track ex-armed service members to teach in schools, without necessarily the requirement of a university degree. Employing theories of white supremacy, and Althusser’s (1971) concept of Ideological and Repressive State Apparatus, I argue that this initiative both stems from, and contributes to, a system of social privilege and oppression in education. Despite appearing to be aimed at all young people, the planned TtT initiative is actually aimed at poor and racially subordinated youth. This is likely to further entrench polarisation in a system which already provides two tier educational provision: TtT will be a programme for the inner-city disadvantaged, whilst wealthier, whiter schools will mostly continue to get highly qualified teachers. Moreover, TtT contributes to a wider devaluing of current ITE; ITE itself is rendered virtually irrelevant, as it seems TtT teachers will not be subject specialists, rather will be expected to provide military-style discipline, the skills for which they will be expected to bring with them. More sinister, I argue that TtT is part of the wider militarisation of education. This military-industrial-education complex seeks to contain and police young people who are marginalised along lines of race and class, and contributes to a wider move to increase ideological support for foreign wars - both aims ultimately in the service of neoliberal objectives which will feed social inequalities
    • …
    corecore