157 research outputs found

    Buddy Study: Partners for better health in adolescents with type 2 diabetes

    Get PDF
    AIM: To investigate whether assigning young, healthy and motivated lay volunteer partners (“buddies”) to adolescents with type 2 diabetes improves hemoglobin A1c (HbA1c). METHODS: Adolescents with type 2 diabetes were randomized to partnering with a “buddy” or to conventional treatment. During the initial screening visit, which coincided with a routine outpatient diabetes clinic visit, patients with type 2 diabetes underwent a physical examination, detailed medical history, laboratory measurement of HbA1c, and completed two questionnaires (Pediatric Quality of Life Inventory and Children’s Depression Inventory) to assess their overall quality of life and the presence of depressive symptoms. Patients were then randomized to the intervention (the buddy system) or conventional treatment (standard care). All patients were scheduled to return for follow-up at 3- and 6-mo after their initial visit. HbA1c was determined at all visits (i.e., at screening and at the 3- and 6-mo follow-up visits) and quality of life and depressive symptoms were evaluated at the screening visit and were reassessed at the 6-mo visit. RESULTS: Ten adolescents, recruited from a pool of approximately 200 adolescents, enrolled over a two-year time period, leading to premature termination of the study. In contrast, we easily recruited motivated lay volunteers. We found no change in HbA1c from the initial to the 6-mo visit in either group, yet our small sample size limited systematic assessment of this outcome. Participants repeatedly missed clinic appointments, failed to conduct self-glucose-monitoring and rarely brought their glucometers to clinic visits. Total quality of life scores (72.6 ± 6.06) at screening were similar to previously reported scores in adolescents with type 2 diabetes (75.7 ± 15.0) and lower than scores reported in normal-weight (81.2 ± 0.9), overweight (83.5 ± 1.8), and obese youths without diabetes (78.5 ± 1.8) or in adolescents with type 1 diabetes (80.5 ± 13.1). Among adolescents who returned for their 6-mo visit, there were no differences in total quality of life scores (70.2 ± 9.18) between screening and follow-up. CONCLUSION: Our approach, effective in adults with type 2 diabetes, was unsuccessful among adolescents and emphasizes the need for innovative strategies for diabetes treatment in adolescent patients

    A Deep Auto-Optimized Collaborative Learning (DACL) model for disease prognosis using AI-IoMT systems

    Get PDF
    In modern healthcare, integrating Artificial Intelligence (AI) and Internet of Medical Things (IoMT) is highly beneficial and has made it possible to effectively control disease using networks of interconnected sensors worn by individuals. The purpose of this work is to develop an AI-IoMT framework for identifying several of chronic diseases form the patients’ medical record. For that, the Deep Auto-Optimized Collaborative Learning (DACL) Model, a brand-new AI-IoMT framework, has been developed for rapid diagnosis of chronic diseases like heart disease, diabetes, and stroke. Then, a Deep Auto-Encoder Model (DAEM) is used in the proposed framework to formulate the imputed and preprocessed data by determining the fields of characteristics or information that are lacking. To speed up classification training and testing, the Golden Flower Search (GFS) approach is then utilized to choose the best features from the imputed data. In addition, the cutting-edge Collaborative Bias Integrated GAN (ColBGaN) model has been created for precisely recognizing and classifying the types of chronic diseases from the medical records of patients. The loss function is optimally estimated during classification using the Water Drop Optimization (WDO) technique, reducing the classifier’s error rate. Using some of the well-known benchmarking datasets and performance measures, the proposed DACL’s effectiveness and efficiency in identifying diseases is evaluated and compared

    Combinatorial Guidance by CCR7 Ligands for T Lymphocytes Migration in Co-Existing Chemokine Fields

    Get PDF
    Chemokines mediate the trafficking and positioning of lymphocytes in lymphoid tissues that is crucial for immune surveillance and immune responses. In particular, a CCR7 ligand, CCL21, plays important roles in recruiting T cells to secondary lymphoid tissues (SLT). Furthermore, CCL21 together with another CCR7 ligand, CCL19, direct the navigation and compartmentation of T cells within SLT. However, the distinct roles of these two chemokines for regulating cell trafficking and positioning are not clear. In this study, we explore the effect of co-existing CCL19 and CCL21 concentration fields on guiding T cell migration. Using microfluidic devices that can configure single and superimposed chemokine fields we show that under physiological gradient conditions, human peripheral blood T cells chemotax to CCL21 but not CCL19. Furthermore, T cells migrate away from the CCL19 gradient in a uniform background of CCL21. This repulsive migratory response is predicted by mathematical modeling based on the competition of CCL19 and CCL21 for CCR7 signaling and the differential ability of the two chemokines for desensitizing CCR7. These results suggest a new combinatorial guiding mechanism by CCL19 and CCL21 for the migration and trafficking of CCR7 expressing leukocytes

    Association of Impulsivity and Polymorphic MicroRNA-641 Target Sites in the SNAP-25 Gene.

    Get PDF
    Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769) and two SNPs in the 3' UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901) using PCR-RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T-T 3' UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3' UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels

    Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    Get PDF
    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells

    High Confidence Prediction of Essential Genes in Burkholderia Cenocepacia

    Get PDF
    BACKGROUND: Essential genes are absolutely required for the survival of an organism. The identification of essential genes, besides being one of the most fundamental questions in biology, is also of interest for the emerging science of synthetic biology and for the development of novel antimicrobials. New antimicrobial therapies are desperately needed to treat multidrug-resistant pathogens, such as members of the Burkholderia cepacia complex. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that essential genes may be highly conserved within a group of evolutionary closely related organisms. Using a bioinformatics approach we determined that the core genome of the order Burkholderiales consists of 649 genes. All but two of these identified genes were located on chromosome 1 of Burkholderia cenocepacia. Although many of the 649 core genes of Burkholderiales have been shown to be essential in other bacteria, we were also able to identify a number of novel essential genes present mainly, or exclusively, within this order. The essentiality of some of the core genes, including the known essential genes infB, gyrB, ubiB, and valS, as well as the so far uncharacterized genes BCAL1882, BCAL2769, BCAL3142 and BCAL3369 has been confirmed experimentally in B. cenocepacia. CONCLUSIONS/SIGNIFICANCE: We report on the identification of essential genes using a novel bioinformatics strategy and provide bioinformatics and experimental evidence that the large majority of the identified genes are indeed essential. The essential genes identified here may represent valuable targets for the development of novel antimicrobials and their detailed study may shed new light on the functions required to support life

    Lithium chloride therapy fails to improve motor function in a transgenic mouse model of Machado-Joseph disease

    Get PDF
    The accumulation of misfolded proteins in neurons, leading to the formation of cytoplasmic and nuclear aggregates, is a common theme in age-related neurodegenerative diseases, possibly due to disturbances of the proteostasis and insufficient activity of cellular protein clearance pathways. Lithium is a well-known autophagy inducer that exerts neuroprotective effects in different conditions and has been proposed as a promising therapeutic agent for several neurodegenerative diseases. We tested the efficacy of chronic lithium 10.4 mg/kg) treatment in a transgenic mouse model of Machado-Joseph disease, an inherited neurodegenerative disease, caused by an expansion of a polyglutamine tract within the protein ataxin-3. A battery of behavioral tests was used to assess disease progression. In spite of activating autophagy, as suggested by the increased levels of Beclin-1, Atg7, and LC3II, and a reduction in the p62 protein levels, lithium administration showed no overall beneficial effects in this model concerning motor performance, showing a positive impact only in the reduction of tremors at 24 weeks of age. Our results do not support lithiumchronic treatment as a promising strategy for the treatment of Machado-Joseph disease (MJD).FCT -Fundação para a CiĂȘncia e a Tecnologia(SFRH/BD/51059/2010
    • 

    corecore