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Abstract

The accumulation of misfolded proteins in neurohsading to the
formation of cytoplasmic and nuclear aggregatesa isommon theme in
age-related neurodegenerative diseases, possiklyaddisturbances of the
proteostasis and insufficient activity of cellulamotein clearance pathways.
Lithium is a well-known autophagy inducer that dzeneuroprotective
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effects in different conditions and has been predoss a promising
therapeutic agent for several neurodegenerativeadess. We tested the
efficacy of chronic lithium (10.4 mg/kg) treatmeim a transgenic mouse
model of Machado-Joseph disease, an inherited degemerative disease,
causecbyan expansion of a polyglutamine tract within thetpm ataxin-3.
A battery of behavioral tests was used to assessade progression. In
spite of activating autophagy, as suggested by itloeeased levels of
Beclin-1, Atg7, and LC3-Il, and a reduction in tip&2 protein levels,
lithium administration showed no overall beneficeffects in this model
concerning motor performance, showing a positivgpdat only in the
reductiorof tremors at 24 weeks of age. Our results do nopaudithium
chronic treatment as a promising strategy for tteatment of Machado-
Joseph disease (MJD).
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Introduction

Lithium, a monovalent cation and a FDA-approvedgdwith the ability to
cross the blood—-brain barrier, has been used ipaise6 decades for the
treatment of bipolar disord(BD) and also adjunctively with mood stabilizers
and antidepressants to enhance, prolong, andttdeilireatment response and
remission of mood disorders [1, 2]. Although itetdpeutic mechanisms
remain unclear, strong in vivo and in vitro evidersuggests that lithium has
neurotrophic/neuroprotective properties toward demange of insults, and
also in neurodegenerative diseases [3, 4]. Lithinimbits glycogen synthase
kinase-3 [5, 6] and increases the protein levelthefbrain-derived
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neurotrophic factor (BDNF) [7, 8], leading to arhanced cell survival.
Lithium also regulates calcium homeostasis and segges calcium-
dependent activation of pro-apoptotic signalinghpatys [9], and it can
protect against endoplasmic reticulum (ER) strdgs| [ associated with
impaired synaptic plasticity and pathology in nelggenerative conditions,
such as Alzheimer’s disease (AD) [11]. In ordeb®oeffective, lithium
requires long-term treatment, and its effects arteraverted immediately after
discontinuation. For this reason, it is thoughtt tithium acts at the gene
expression level. Indeed, lithium is able to uplatgithe expression of
iImportant molecules such as HSP70 [12, 13], BCI32 14, 15], BDNF [7,
8, 16], HSF1 [13], and CREB [4], among others. M, lithium
decreases inositol 1,4,5-trisphosphate by inhigiphosphoinositol
phosphatases [17, 18]; this was proposed as a moeethanism to induce
autophagy [19-21]. Macroautophagy, commonly refittoeas autophagy, is
an important process for the degradation of prateimd organelles and plays
a major role in cellular stress conditions [22]isltalso involved in neuronal
and astrocytic cell survival and function [23]. Tjmecess of autophagy
begins with the formation of double-membrane suiues called
autophagosomes that fuse with lysosomes (autolysespand lately degrade
their contents by lysosomal hydrolytic enzymes [28]. Autophagy recycles
cytoplasmic proteins in normal conditions and réegautrients when
necessary, for instance, under starvation. Theraatation of misfolded
proteins in cells is a common feature in aging anseveral
neurodegenerative disorders [26], which makes d#ggp a prominent target
for the treatment of such diseases; these incladgt&ophic lateral sclerosis
(ALS), Parkinson disease (PD), AD, Huntington’'sedise (HD), and
Machado-Joseph disease (MJD) [27—-37]. Drugs thegrgially modulate
autophagy are increasingly being used in clinigalg, and screens are being
performed for the discovery of new compounds thdtuice autophagy.
Autophagy is modulated by several signaling pathsnayd is directly
inhibited by the serine/threonine protein kinasemmalian target of
rapamycin (MTOR) [38]. Administration of rapamydias been demonstrated
to be beneficial in different animal models of nedegenerative disorders, by
enhancing autophagic function [24, 29, 36, 39, 4lijtophagy can also be
regulated independently of mTOR, which can be agdehrough lithium,
sodium valproate, and carbamazepine, compounddaWwat myo-inositol-
1,4,5-triphosphate levels [20, 41]. Lithium actsamsautophagy enhancer or
inhibitor, depending on the dosage. At higher dpgashibits GSK:B, which
suppresses autophagy [42]; in contrast, at lowsesdpit inhibits IMPAse,
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inducing autophagy [20].

Chronic lithium treatment was tested in several ele@f neurodegenerative
diseases. Lithium was shown to have beneficialcgdfen patients and also in
an ALS mouse model [43, 44]. The study in the mauselel demonstrated
neuroprotection by lithium, which delayed diseaseeai and duration and
increased lifespan. In the clinical trial, a randoped study of adults with ALS
showed that none of the patients treated withdiihdied during the

15 months of the follow-up, and the disease pragoeswas markedly
attenuated [44]. In a mouse model of HD, this trezit had variable effects;
lithium improved the motor performance and redudegressive-like
behavior, but only when administered post-symptaocady [45];
furthermore, it had no effect on survival in thisdel [45]. Chronic treatment
with lithium also improved neurological functiondhippocampal dendritic
arborization in a mouse model of SCAL [46]. Moreeamtly, chronic lithium
treatment was shown to ameliorate the phenoty@eMID Drosophila

model, partially by inhibiting GSKB[47].

Taking into account the beneficial effects of lithi and its autophagy
induction properties, and considering that litdeknown about its possible
effects in MJD, we performed chronic lithium tream in the CMVMJD135
mouse model [48]. Our results show limited beneafieffects of lithium
treatmen;: Aalthough it subtly improved a few of the symptomseltved at
specific time points, it was not able to globaltygrove motor function in this
model. These findings do not support the idea litldtim is a good candidate
to treat MJD. This is of clinical relevance, sirmee may avoid the collateral
effects of trying lithium therapy in MJD patients.

Material and Methods

Transgenic Mice

We used the CMVMJD135 mice [48], which express gpa@ded version of
the human MJD1-1 cDNA (the 3 UIMs-containing vatiaf ATXN3) under
the regulation of the CMV promoter (ubiquitous eagsion) at
near-endogenous levels. All animals were maintauneder standard
laboratory conditions: an artificial 12-h light/dacycle (lights on from 8:00
to 20:00 h), with an ambient temperature o2l °C and a relative humidity
of 50-60 %; the mice were given a standard dieFBRduring the gestation
and postnatal periods, and 4RF21 after weaning,edal@a SRL, Settimo
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Milanese, Italy) and water ad libitum. All procedarwere conducted in
accordance with European regulations (European rubioective 86/609
/EEC). Animal facilities and the people directlwaived in animal
experiments (S.D.S, A.N.C) were certified by thetBguese regulatory entity
—Direccao Geral de Veterinaria. fef the protocols performed were
approved by the joint Animal Ethics Committee oé thife and Health
Sciences Research Institute, University of Minheaklh monitoring was
performed according to FELASA guidelines [49], domiing the Specified
Pathogen Free health status of sentinel animalataiaed in the same animal
room. Humane endpoints for experiment were defi{@€d% reduction of the
body weight, inability to reach food and water,ggece of wounds in the
body, dehydration), but not needed as the studpg@avas conceived to
include ages at which animals do not reach thedpants.

Mouse Genotyping

The progenies produced by mating MJD transgenib witd-type animals
were genotyped at weaning by PCR, as previouslgrdesd [50].

Drug Treatment and Behavioral Tests

Male mice were used in the study since they shes Variability than

females in behavioral tests, due to the more végiabrmonal female status.
Transgenic and non-transgenic, drug- and vehidatéd animals were housed
at weaning in groups of five animals per cage. &kgeriment started at

4 weeks and ended at 24 weeks of age. At 4 weelkgafwe screened the
overall status of the animals by the SHIRPA protdmfore starting the
treatment with lithium chloride (LiCl, Merck, Masdausetts, USA). The
treatment started at the asymptomatic age of 5 sieekveek before the
previously observed onset of symptoms [48].

We used a total of 40 animals, which were housegatng to the drug
administered, since the experiment was carriedbgw single experimenter,
which was only blind to the genetic status of thevals. The animals were
intraperitoneally injected three times per weelcept in the week of
behavioral tests. Transgenic and non-transgenertitates i = 10 for each
genotype) were treated with 10.4 mg/kg of lithiumaride as previously
described [44, 45]. Control littermate animals wgieen a vehicle injection
of buffer (0.15 M NaCl, 5 % Tween-20, and 5 % PHI®Ywith the same
frequency. The animals were evaluated at 20 amde®ks of age in the Beam
Walk Balance test. The SHIRPA protocol was perfatraeall ages tested. For
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a detailed description of behavioral testing, sekWw.

Body Weight

All mice were weighed a week before the start @f dinug treatment (4 weeks)
and then at 5, 6, 8, 9, 10, 12, 13, 14, 16, 17ah8,20 weeks of age.

Beam Walk Balance Test

The beam walk balance test assesses balance dsbisensitive to fine
motor coordination. This test measures the abdftyhe animal to stay upright
and to walk on an elevated beam without fallinghe cushioned pads below,
or slipping to one side of the beam. The beams@rem long and made of
smooth wood with a square (12 mm wide) or a rouidd &nd 17-mm
diameter) shape. The beam is placed at the hefgfd om. The test has
different levels of difficulty obtained by varyinge shape and width of the
beams. The animals were trained during 3 daysearstiuare beam (12 mm).
In the fourth day, they were tested in the trainegm and also in two round
beams (17 and 11 mm).

The animal is placed on one end of the beam andadHewed to walk along
the beam and reach the opposite end (which haafa™dark box). At the end
of the training days, the animals should be capablgerforming the task in
less than 20 s. By day 4, animals were tested usingoeams of different
width and shape (square and round). If the animlhbf turned around in the
beam, this was considered one failed trial. Eagmahhad the opportunity to
fail two times in each beam. The time the animaktto cross the beam was
counted, and time was discounted if the animal@dgn the beam.

SHIRPA Protocol

We established a protocol for phenotypic assessiveesdd on the primary
screen of the SHIRPA protocol, which mimics thegiiastic process of
general neurological and psychiatric examinatiohumans [51]. Each
mouse was placed in a viewing jar (15-cm diamétmrb min and transferred
to a 15-labeled-squares arena ¥&683 x 18 cm), and then a series of
anatomical and behavioral features were registéerbd.full details of the
SHIRPA protocol are available at the site http:fpeess.har.mrc.ac.uk
/browser/?sop_id=10 _002_0 . In addition, we inchlittee footprint pattern
test (see below) to assess gait [52] and the cogrmti rears over 5 min in the
viewing jar, as a measure of spontaneous vertialoeatory activity. The
protocol was adjusted in order to minimize animahdlling and to generate
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uniformity in waiting times between the tests [53].

Footprint Pattern

The footprint test was used to evaluate the foagdmg of the animals. To
obtain footprints, the hindpaws and forepaws ofrthee were coated with
black and red non-toxic paints, respectively. Aacl@ectangular paper sheet
was placed on the floor of the runway for each iime animals were then
allowed to walk along a 100 cm loxgd.2 cm widthx 10 cm height corridor
in the direction of an enclosed black box. Eachreiwas allowed to achieve
one valid trial per age. To evaluate the preserideai dragging through age,
the footprinting pattern of CMVMJD135 and wild-tyet) vehicle- and
lithium-treated (= 10 per group) was analyzed at each time point censig
Six consecutive steps (absent, no dragging; preaéigast one step out of six
shows dragging).

AQ3

Assessment of Autophagy Activation

The animals that were chronically treated with Li@ 19 weekandwere
killed 12 h after the last injection as previoudbscribed [48], and the brain
and muscle tissue were immediately frozen in dey We also injected
wild-type animals with LiCl (10.4 mg/kg) three timén 1 week in alternate
days and performed the killing at different timarge after the last injection:
6, 14, 16, 18, and 24 h for determination of a@ffects. Another set of
animals was injected with the vehicle and killedhrst same time points.

AQ4

Western Blot

Brain tissue was homogenized in cold 0.1 M Tris—HfH 7.5, 0.1 M EDTA,
and a mixture of protease inhibitors (Complete, IRpSwiss) and was
sonicated for 10 s. Protein concentration was daterd using the Bradford
assay (Biorad, CA, USA). Samples were heated fmirbat 100 °C and
microfuged for 10 s before loading. For each sampdaig of total protein
was loaded into SDS-PAGE gels and then transfdoettrocellulose
membranes (Amersham GE Healthcare, UK). After imatidm with the
primary antibodies—rabbit anti-LC3 (1:1,000 Novu®IlBgicals, Littleton,
CO), rabbit anti-IMPA1 (1:1,000, Abcam, Cambrid@), rabbit anti-p62
(1:50, Abcam, Cambridge, UK), rabbit anti-Beclir(4£1,000, Cell signaling,
Beverly, MA), rabbit anti-Atg7 (1:1000, Cell sigmad), Beverly, MA), mouse
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anti-alpha-tubulin (1:100, DSHB, University of lom@wa), and mouse
anti-beta-actin (1:100, DSHB, University of low#)+-the secondary
antibodies were incubated at the following dilusoanti-rabbit (1:10.000,
Santa Cruz, Dallas, TX, USA) and anti-mouse (1:00,8anta Cruz, Dallas,
TX, USA). Antibody affinity was detected by chemmiinescence (ECL Kit,
Santa Cruz, Dallas, Texas, USA). Band quantificats@s performed using
the ImageJ software according to the manufacturesBuctions, using alpha-
tubulin as the loading control.

Determination of Lithium Plasma Levels

The plasma lithium levels were measured applyirgltlifH assay using the
Dimension Vista® System (LITH Flex® reagent cargred—SIEMENS.

Statistical Analysis

Power analysis was used to determine the sampaeg S#]. Considering the
different variables under study, such as weighttameé held in the hanging
wire, assuming a power of 0.8 and a significaneellef 0.05, different
required sample sizes were obtained, dependinh®specified smallest
detectable difference and the variability of th@enmental groups. Based on
these calculations and bearing in mind that asageeof the animals increases,
also the mean differences increase and, posst#ystandard deviations, a
sample size ranging between five and ten animatksaotained, and therefore,
a sample of ten animals was chosen. For specihaweral tests and time
points of analysis, see Supplementary Table S1.

Continuous variables with normal distributions (KeStp > 0.05) were
analyzed with the Studentidest or two-way ANOVA (factors: genotype and
treatment). Behavioral data were subjected to tire parametric
Mann—-WhitneyU test when variables were non-continuous or when a
continuous variable did not present a normal disiion (Kolmogorov-
Smirnov tesp < 0.05). Categorical variables in the SHIRPA protowele
analyzed by contingency tables (Fisher’s exac).tédl statistical analyses
were performed using SPSS 22.0 (SPSS Inc., ChidayoA critical value

for significance ofp < 0.05 was used throughout the study.

Results

In the CMVMJD135 transgenic mouse model, mutantiat8 expression is
close to the endogenous levels and the MJD-likepggms are progressive in
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life, as observed in human patients [48]. In therent study, we confirmed
the onset of the neurological phenotype at 6 weélse, with loss of grip
strength, measured using the hanging wire tesROAweeks of age, the
animals showed a deficit in balance on the beam ltesas also possible to
observe tremors, foot dragging, and limb claspfgthermore, they
exhibited decreased locomotor and exploratory behdate in life. This
model does not show premature death, allowing liwagtment periods—in
the present case, treatment was administered fareEks, i.e., until the age
of 24 weeks, when animals display overt symptontsafull-blown
neurological phenotype.

Autophagy Is not Altered in the Brain of CMVMJD135 Mice

At basal conditions, autophagic activity in 24-moid CMVMJD135 mouse
brains did not differ from that of littermate coails (Fig. 1a). Autophagy was
assessed by the measurement of protein levels 8fIL(~ig. 1b), an
autophagosome marker; of Beclin-1 (Fig. 1c), a@rotnvolved in the
nucleation step of autophagy; of Atg7 (Fig. 1d)ahaed in the elongation
step of this process; of p62 (Fig. 1e), an autoglggpstrate; and of IMPA1
(Fig. 1f), an enzyme responsible for the provisodmnositol required for
synthesis of phosphatidylinositol and polyphospbesitides. Our results
suggest that autophagy is neither impaired nor-aeéivated in this
transgenic mouse model of MJD.

Fig. 1

Autophagy basal levels in CMVMJD135 mica.Representative Western blot
probed with LC3, Beclin-1, Atg7, p62, IMPAL, andbtdin antibodies. At least
three technical replicates were performied. LC3-Il, Beclin-1, Atg7, p62, and
IMPA1 protein levels were measured in brain lysate€MVMJID135 mice £
=5) and their littermate wild typenE 5) at 24 months of age. LC3-Il protein
levels were normalized both for LC3-1 anetubulin; Beclin-1, Atg7, p62, and
IMPA1 were normalized foro-tubulin. *p<0.05; *p<0.01; **p<0.001
(Student’st test)
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Lithium Chloride Induces Autophagy in the Mouse Brain
In order to verify if lithium chloride could induceautophagy at the dosage we
planned to administer (10.4 mg/kg), similar to thaéd by Fornai et al. [44
and Wood and Morton 45], we used a group of wildetynice, injected them
with lithium chloride [45] three times per week,dameasured the levels of
autophagy markers in the brain at different timenfgoafter the last injection
(6, 14, 16, 18, and 24 h post-injection). In thesee, in which the mean
plasma lithium concentration achieved was®®09 mmol/L, we were able
to observe an increase in the LC3-1lI/LC3-I ratiag(F2a) and a decrease in
IMPA1 (Fig. 2f), an enzyme whose expression is directly inhibigd
lithium. According to theGuidelines for the use and inter pretation of assays
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for monitoring autophagy in higher eukaryotes [55], LC3 is the only marker
for autophagosomes, but in mammalian cells, toGB3 [protein levels may not
be altered after a cellular challenge; the mosbabde finding is the increase
in the conversion of LC3-1 to LC3-Il. LC3-1 is abdant and stable in the
central nervous system, which is a parameter te talkconsideration in this
type of measurements [55]. Importantly, the LC2-@B8-I ratio was increased
at the protein level in the brain of lithium-tredteice (Fig. 2a). We also
found an increase in LC3-II/LC3-I ratio in muscissue (data not shown).
Consistently, Beclin-1, a protein involved in thecfeation step of the
autophagosome formation [56], was also increasehimals treated with
LiCl, supporting autophagy induction by this treatm (Fig. 2b).
Furthermore, the levels of Atg7, a protein involvedhe elongation step of
autophagosome formation, were also increased ihifDetreated animals
(Fig. 2c). The decrease in p62 levels confirms thabphagy was occurring
without blockage (Fig. 2d). The levels of IMPAL weras expected,
decreased (Fig. 2e).

Fig. 2

Autophagy induction by acute lithium treatmeatAnti-LC3 Western blot of
brain lysates of wild-type animals injected withhide (=4) or lithium
10.4 mg/kg G =4 for each time point)p Beclin-1 Western blot of brain lysates
of wild-type animals injected with vehicle € 4) or lithium 10.4 mg/kgn(=4
for each time point)c Atg7 Western blot of brain lysates of wild-typeiraals
injected with vehicler{=4) or lithium 10.4 mg/kgr(=4 for each time pointxl
p62 Western blot of brain lysates of wild-type aaiminjected with vehiclen(
=4) or lithium 10.4 mg/kgr(=4 for each time point)e anti-IMPA1 Western
blot analysis of brain lysates of wild-type animailgected with vehicler(=4)
or lithium 10.4 mg/kg1i=4 for each time point); lithium-injected animalsree
killed at different time points as shown in tgeaph; vehicle animals were
kiled 6 h post-injection. Alpha-tubulin or betatic was used as loading

control. *a p<0.05; *np<0.01;*** n<0.001(Student’'ds test)
AQ6
AQ7
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To complement these analyses, we measured theslefautophagy markers
in the brain of the transgenic animals that wenmmugltally treated with LiCl,
namely, the LC3-II/LC3-I ratio (Fig. 3a), as wel protein levels of Beclin-1

12 de 37 08/08/2014 14:2



e.Proofing http://eproofing.springer.com/journals/printpag@ptoken=pxuonN2

(Fig. 3b), Atg7 (Fig. 3c), p62 (Fig. 3d), and IMPARIg. 3e), and the results
were similar to those observed for the acute Li€atment, confirming that
autophagy remains induced in the chronically tre@eimals.

Fig. 3

Autophagy induction by lithium in chronically treat transgenic mice at
24 weeks of agea Anti-LC3 Western blot of brain lysates of transgeanimals
injected with vehicler{=4) or lithium 10.4 mg/kgr{(=4); b Beclin-1 Western
blot of brain lysates of transgenic animals injecteith vehicle 6=4) or
lithium 10.4 mg/kg K=4); c Atg7 Western blot of brain lysates of transgenic
animals injected with vehiclenE4) or lithium 10.4 mg/kg r(=4); d p62
Western blot of brain lysates of transgenic aninmgjlscted with vehicler{(=4)

or lithium 10.4 mg/kg ri=4); e anti-IMPA1 Western blot analysis of brain
lysates of transgenic animals injected with veh{ale 4) or lithium 10.4 mg/kg
(n=4); alpha-tubulin or beta-actin was used as loadmgfrol. % <0.05; **p

<0.01;*** p<0.001(Student’d test)
AQ8
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animals, which were comparable to those of vehidated mice
(Supplementary Fig. S1).

Lithium Did not Improve Body Weight Loss in
CMVMJD135 Mice

We assessed the phenotype of the mice from 4 tweks of age (Fig. 4a).
Animals were weighed at 4 (before the treatmen, R, 9, 10, 12, 13, 14, 16,
17, 18, and 20 weeks of age. One of the known ol effects of lithium
treatment in human patients is weight gain [57],Wwa did not observe this

in our study. Chronic administration of LiCl had affect on body weight in
wt animals, compared with wt animals treated wighizle. At 12 weeks of
age, vehicle-treated CMVMJD135 mice started to eght compared to the
vehicle-treated wt animalp € 0.024) as previously observed for this model
[48] (genotype: F 4,=9.919;p=0.003) and &it;is known to occur in human
patients [58]; this body weight reduction was pexgive in time, as shown in
Fig. 4b. No differences were found between vehialed lithium-treated
transgenic animals, i.e., lithium treatment did moprove this body weight
reduction.

Fig. 4

Effect of lithium treatment on body weight and sgth of CMVMJD135 and
wt mice.a Schematic timeline for the behavioral analysisitbfum pre-clinical
trial. b The body weight in grams between 8 and 20 weelksyefwas depicted
for wt and CMVMJD135 mice treated with LiCl or vele (h=10 for each
group). ¢ Hanging wire test—all transgenic animals display warse
performance in holding the grid with age (from 8 24 weeks of age). A
maximum time of 2 min was given to each animal dreltime that they took to
fall was registeredn(= 10 for each group)Symbols represent mean =+ SEM of

the different groups. §<0.05; *p<0.01; *** p<0.001, for genotype factor
(two-way ANOVA)
AQ9
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Lithium Treatment Had no Major Effect on Neurological
Deficits Present in CMVMJD135 Mice

We analyzed all the animals using the SHIRPA prot$61] before the
treatment onset, at 4 weeks of age, and no diftemere found between wt

and CMVMJD135 animals (data not shown), meaning alhahis time point,
the transgenic animals did not show any symptondisdase.

The first disease manifestation in the CMVMJD135delas the loss of limb
strength given by the hanging wire test, which rueas the time the mouse is
able to hold a grid with its hindlimbs and, mosflyrelimbs, before falling.
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Whereas wild-type animals—treated and vehicle gsedpere almost always
able to complete the task (hanging in the gridtfi@ maximum time, 2 min),
transgenic animals—both LiCl- and vehicle-treateoups—showed a
decreased latency to faII from the grid, worseninith age (genotype: 9=
324.589;p=1.6628x% 107 ) (Fig. 4c).

At 16 weeks and subsequent ages, CMVMJD135 veliiekted animals
showed a decrease in exploratory behavior, givethbynfrequent rearing
behavior, which progressed to almost no rearintpatage of 24 weekp
0.05). At 8 weeks of age, lithium-treated CMVMJD1&&mals showed an
increase in exploratory behavior when compared wathicle-treated
CMVMJD135 animals, given by the increase in numierears in the
viewing jar (= 0.026). This activity reached that of the vehialeated wt
animals at this age, but at later stages, the irgm@nt was no longer seen
(Fig. 5a). To further test exploratory locomototigity, we counted the
number of squares travelled in the arena useddrSthIRPA protocol.
CMVMJD135 treated with vehicle showed a decreasdennumber of
squares travelled in the arena at 20 and 24 welekgeop = 0.003 and =
0.002, respectively), which was not improved byarhe lithium treatment
(Fig. 5b).

Fig. 5

Effect of lithium treatment upon spontaneous extimry activity and gait
guality. a Transgenic animals display decreased verticalnmtor activity at
16 weeks of age and subconsequent agesl(Q for each group)y Transgenic
animals travel less in the arena than wild-typareats at 20 and 24 weeks of
age; lithium treatment had no effect in this phgpet( =10 for each groupk
CMVMJD135 animals have abnormal gait at 20 and 2deks of age
(qualitative assessment) that is slightly revettgd.iCl at 24 weeks, although
not statistical significantn(= 10 for each group) Quantitative analysis of the
foot dragging: Presence/absence of dragging demaiedt that transgenic
animals drag their feet since 12 weeks of age, Wwkvas not ameliorated by
LiCl (n=10 for each group).p<0.05; *p<0.01; **p<0.001
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We also performed qualitative analysis of the gathe open arena as
described by Rogers et al. [51]. We scored the alswith O when their gait
was normal, 1 when the animal had a fluid stepfingan abnormal walking,
and 2 when the animal had limited walking [51]. CM¥D135 animals
started to have significantly worse gait scorethatage of 20 weekp €
0.029), and at 24 weeks of age, 100 % of the arsirfnadl a visibly abnormal
gait (80 % of the animals were scored as 1, 10 %, and 10 % as @ =
0.000017) (Fig. 5c). There was a trend toward inapnoent with lithium
treatment, but only at 24 weeks of age (80 % ofvihlgicle transgenic animals
were scored as having abnormal gait, in contrast &1 % of the treated
transgenic animalgy = 0.054) (Fig. 5c). Additionally, we performed a
semi-quantitative analysis of the foot draggingeoled in the mice (Fig. 5d).
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We found no significant differences in the footstepasurements between the
four groups at the ages tested, but it was possibtdserve that

CMVMJD135 animals presented foot dragging at 12ksegp =0.00002) and
that this symptom progressed in severity with gge Q.05). At 20 weeks of
age, all CMVMJD135 mice (100 %,= 2 x 10 ") dragged their feet while
walking. Lithium was not able to rescue this phepet

When mice are picked up by the tail and suspendedrd a surface, their
normal reflex is to extend all the four paws toieipate the ground [59]. The
paw clasping phenotype, in which the animals canttiae paws instead of
extending them, is observed in several mouse madighsdamage in the
cerebellum [60, 61] or in the basal ganglia [62 ],&$d also in models of
AD [64-66]. In CMVMJD135 mice, this paw claspinggstotype was
detected at 24 weeks of age=2 x 10_6), whereas wt animals never
presented this abnormal reflex (Fig. 6a). Lithimeatment was not able to
rescue this aspect of the phenotype (Fig. 6a).

Fig. 6

Effect of lithium treatment on limb clasping anerors.a Limb clasping is
observed in transgenic animals—treated and nonetleaat 24 weeks of age
(n=10 for each groupp CMVMJID135 mice presented tremors since 16 weeks
of age; LiCl is able to decrease tremors in transganimals at 24 weeks of age
(n=10 for each group).p<0.05; *p<0.01; **p<0.001 (Fisher’s exact test)
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presenting tremors through age, starting at 16 weélkage |p < 0.05), which
was, surprisingly, ameliorated with lithium treatmethis improvement being
significant only after a long period of administoat (24 weeks of age

We also observed an increase in the percentagamgdenic animals
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0.02) (Fig. 6b).

Lithium Fails to Rescue Balance and Fine Motor Deficits in
CMVMJD135 Mice

The balance beam test depends on the mouse’syabilihaintain balance
while traversing a narrow beam to reach a safdqiat[67] and was used to
test the balance and fine motor coordination cdpeds in CMVMJD135 and
wt animals, treated with LiCl or with the vehiclat 20 weeks, CMVMJD135
animals were slower to traverse the round beants Witmm (genotype: 3,
=8.96;p=0.005; genotype& treatment: | 3, =5.260;p=0.029) and 11 mm
of diameter (genotype: Rz=4.447;p=0.042), but not significantly slower
in the 12-mm square beam, in which they had besndd; the difficulty in
performing this task was confirmed at 24 weeksgd,avhen transgenic
animals were slower in traversing the 12-mm sqbam (genotype: /5, =
6.412;p=0.016), the 17-mm round beam, (f5=5.315;p =0.028), and the
11-mm round beam (genotype; £5=5.041;p=0.032) (Fig. 7). In the
11-mm round beam, transgenic mice showed a “cranbehavior” (when the
animal’s thorax and abdomen are in contact withkidam surface) and
dragged themselves across the beam. Lithium hadgmificant effects in the
performance in the beam of either wt or CMVMJD13fgen

Fig. 7

Effect of lithium treatment on balance and motororchnation. Eachbar
corresponds to the mean of two consecutive trialeach beam. The time to
traverse the beam was videotaped and then meayrteg same experimenter.
Ten to 12 animals were used for each conditignk 6.05 for genotype factor
(two-way ANOVA); #<0.05 for genotype treatment factor (two-way
ANOVA)
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Discussion

One promising therapeutic strategy in diseasescest®a with misfolded
protein accumulation is the stimulation of cellutkegradation pathways such
as macroautophagy. Here we have tested the effexitbophagy activation
by lithium in a mouse model of MJD, beginning gira-symptomatic age.

In this study, we confirmed the progressive neugaghenotype of the
CMVMJD135 mouse model, through observation of theug of vehicle-
treated animals, which behaved as previously desdrj48]. Chronic lithium
treatment was, however, not able to rescue theohtagical phenotype of
these mice. The disease-causing polyQ CAG repgztreston in ataxin-3
might cause neurotoxicity both through a toxic gairiunction and a loss of
the wild-type ataxin-3 normal function(s) [68]. $&al molecular pathways
might be involved in MJD neuropathology, althougle precise pathogenic
mechanism(s) is (are) not known [69, 70]. Decreamsgdphagy is a cellular
process that might be included in these mechanj8®s 37, 71]. An
autophagy impairment was recently proposed to ootarmouse model of
MJD, as well as in the brain of MJD patients [3¥IID pathogenesis has
been modeled through the expression of mutant @dxhat causes aggregate
formation and toxicity, in cell models and in viyé2], and autophagy has
been shown to be an effective cellular strategytlierclearance of these
aggregated proteins [73, 74]. Menzies and colleagismonstrated that
autophagy induction by rapamycin could improve roteperformance in a
transgenic mouse model of MJD [36]; however, théOMdodel used in this
study presented a very mild phenotype (not sigaiitty different from
control mice from a statistical standpoint), and #uthors proposed that this
hypothesis should be further confirmed in a modhwnore marked
phenotype. Also, in this study, the authors sugtestit would be of great
Importance to test other compounds that can indutephagy, such as
lithium. Here, we provide a complete behaviorallgsia of the CMVMJD135
mouse model chronically treated with lithium chbtei

At basal conditions, it was not possible to obsesgmificant differences in
protein levels of LC3-Il, Beclin-1, Atg7, p62, ahdPA autophagy markers
when comparing CMVMJD135 with wild-type animals2zt weeks of age
(when they have a well-established phenotype), ssigiug that, in spite of the
neurodegenerative changes they show [48], the Aatppprocess is
functioning normally in the brain of these mice.ig s in contrast with the
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findings in another transgenic mouse model of Mditgracterized by more
marked overexpression of ataxin-3 and a fasteradisg@rogression [75],
where it has been proposed that autophagy wasamterated but functional
only at early stages of the disease [37].

Given the previous results in other related neugederative diseases and our
own results with 17-DMAG, which delayed diseasegpession the
CMVMJD135 mouse and induced autoph[ 48 ], we reasoned that even if
autophagy is normal in these mice, it might be uls&f boost the cells’
capacity to eliminate toxic ataxin-3 aggregatesides we proceeded with
chronic lithium treatment in the CMVMJD135 mice.thms study we selected
to use a dosage at the lower limit of the therapeaainge in order to avoid
cerebellar toxicity as much as possible. The eéfycaf lithium as an
autophagy inducer in the brain was validated bydderease in protein levels
of IMPA-1, induction of Beclin-1 and Atg7 proteiaJels, increased
LC3-II/LC3-I ratio, and decrease in p62 in trea@dVMJID135 mice. Our
reason for studying treatment of the CMVMJD135 nhedore onset of the
symptoms was to have the strongest effect possililee disease progression
and to see if we could prevent or delay the ont#tedisease rather than
treat it once established, as mechanistically, mecigated that it would be
harder to remove the larger nuclear inclusions draaller cytoplasmic
aggregates. Considering the availability of a gentetst for MJD patients,
this early stage treatment design could be fea$dslenutation carriers even
before they present clinical symptoms.

At the phenotypic level, LiCl treatment did not cas the loss of body weight
observed in CMVMJD135 animals. Progressive weighslis observed in
MJD patients [58], despite a normal appetite [ 76d also in HD patients
[77]. It has been reported previously that treativeith LiCl
pre-symptomatically caused loss of body weight HAmouse model,
whereas a gain of body weight was observed wheh ttg@tment was
performed in post-symptomatic animals [45]. We hawveobserved loss or
gain of body weight as result of the treatment hpdormed, which was
initiated 1 week before symptom onset. Intriguin@y 8 weeks of age,
lithium-treated CMVMJD135 animals showed an inceeasexploratory
behavior when compared with vehicle-treated CMVM3b &nimals, given
by the increase in number of rears in the viewarg This activity reached the
levels of vehicle-treated wt animals. We believattthis apparent (and
transient) amelioration might have been due tonaproved reaction to the
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novelty of the test (i.e., an effect in mood) amd because lithium was having
benefic effects at the motor level, since this vesof hypoactivity was not
manifested in other motor parameters and was nattaiaed through life.

The tremors observed in CMVMJD135 mice were amatied with lithium
treatment, this improvement being statisticallynsigant only after a long
period of lithium administration. This is an intudigng finding because tremors
are often observed in BD patients taking lithium llmng periods [78], being
a side effect of this drug. Additionally, tremongaot a major symptom in
MJD patients, but rather a rare manifestation [ 7DH8at can be treated with
levodopa or dopamine agonists [82]. Thus, the tremascue by lithium
treatment that we observed in CMVMJD135 mice at ohthe time points of
analysis might not have a major impact in humanepés.

Gait analysis was performed using qualitative asiglygiven by the “the way
animals walk” in the arena—scored by the experireeras part of the
SHIRPA protocol [51]—and by the footprinting anak/§52], respectively.
In the qualitative gait analysis, vehicle-treated\0MJD135 animals showed
visible deficits in gait at 20 and 24 weeks of algethe last time point of
analysis (at 24 weeks), LiCl treatment appearedifmove the visible quality
of gait, but this effect was not statistically sifgeant.

Regarding balance (balance beam test), abnormakesf (limb clasping), and
strength/fine motor coordination (hanging wire Jegtwas also not possible
to observe any amelioration of CMVMJD135 mice wlithium treatment. Of
notice, the number of animals used in the studywadld detection of a 50 %
effect size for all tests for at least one agehuwiie exception of the medium
square and small circle beams in the balance beatrahd the exploratory
locomotor activity in the SHIRPA protocol (Supplemary Table S1).

Lithium was shown to have beneficial effects in orglerformance (given by
rotarod analysis) in a transgenic mouse model AB16] but had no effect
in motor performance in a HD mouse model when adtened
pre-symptomatically [45]. The current study demoaitts that long-term
peri-symptomatically initiated lithium treatmentdhao major effects in a
mouse model of MJD. Depending on the concentratidnum has
well-established collateral effects. At least, irce) these side effects may be
the result of differences in the ability of someiwidual mice to clear LiCl
from the plasma. In humans, at a dose of 1.5 mHEugLside effects are
considered mild, but anorexia [83], tremors [84gdusea, diarrhea, vertigo,
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confusion (American Psychiatric Association 200#)¢d cognitive impairment
can occur [85]. Of relevance to this pathologyewersible cerebellar toxicity
due to lithium intoxication has long been recogdiaed can lead to ataxia,
nystagmus, and dysarthria [86]. The pathophysiolagythium-related

ataxia appears to be related with loss of Purkiejiés in the cerebellum, with
sparing of the surrounding basket cells [87]. Cians are aware of these
risks and monitor lithium plasma levels of the pats’ closely. Side effects
need to be carefully analyzed since lithium canseacerebellar toxicity even
at so-called therapeutic levels [88].

While completing the experiments for this artiddehuman clinical trial with
lithium carbonate was performed in MJD patientstp/clinicaltrials.gov
/ct2/show/record/NCT01096082 ). This study demaistt that lithium (at a
dose of 0.5-0.8 mEqg/L) was safe and well tolerdggatients during the trial
period, but the disease progression was not imgreveer 48 weeks of
follow-up, given by the Neurological Examinationd®e for the Assessment
of Spinocerebellar Ataxia (NESSCA) and the Scaletlhe Assessment and
Rating of Ataxia (SARA) scales. However, the authaere able to show that
the patients treated with lithium had a slightlgwgér progression concerning
two quantitative ataxia assessment tools, the n?@di rate and the Click
Test, as well as in the spinocerebellar ataxiational index (SCAFI) and
composite cerebellar functional score (CCFS), wb@mpared to patients
receiving placebo. Considering this minor improvemia a few ataxia
measures, the authors proposed that a larger nuafipatients should be
enrolled in a new clinical trial to clarify thesesults [89]. Although the
dosage used in our study is considerably lower thahused in the human
study, and our treatment was initiated 1 week lefymptom onset, this
clinical trial is in accordance with the presenidst, where we could not find
improvement by chronic LiCl treatment in the cooralion and ataxia
measurements, although some behavioral paramsteris,as tremors and gait
quality, were slightly ameliorated. Furthermore, uwsed similar doses as
those administered in studies showing beneficiot$ in mouse models of
ALS and HD [44, 45] and confirmed that this dosagfuced the expected
biological effects, namely concerning autophagyuictcn.

AQ10

Conclusion

In conclusion, the present study, demonstratesdimanic lithium treatment
Is not able to rescue the CMVMJD135 mouse phengtgperesults do not
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support lithium treatment as a good approach fobMaarticularly as the
above mentioned side effects must be taken in densiion.
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Supplementary figure 1

L evels of human ataxin-3in LiCl-treated animals. Anti-ataxin-3 western-blot
of brain lysates of transgenic animals injectedhwehicle (veh) 1=4) or
lithium chloride (LiCl) 10.4 mg/Kgrf=4) at 24 weeks of age. Actin was used

as loading contro*,**, *** rapresents-thep<0.05;-0.01-0r 0.001,respectively
(test-t student). (GIF 14 kb)
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High resolution image (TIFF 2617 kb)

Supplementary Table 1

Sample size calculations for each behavioral testiming a power of 0.8 and a
significance level of 0.05. (GIF 22 kb)
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