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Abstract

The  accumulation  of  misfolded  proteins  in  neurons,  leading  to  the

formation  of  cytoplasmic and nuclear  aggregates,  is a  common theme in

age-related neurodegenerative diseases, possibly due to disturbances of the

proteostasis and insufficient activity of cellular protein clearance pathways.

Lithium  is  a  well-known  autophagy  inducer  that  exerts  neuroprotective
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effects  in  different  conditions  and  has  been  proposed  as  a  promising

therapeutic  agent  for  several  neurodegenerative  diseases.  We  tested  the

efficacy of chronic lithium (10.4 mg/kg) treatment in a transgenic mouse

model of Machado-Joseph disease, an inherited neurodegenerative disease,

caused byan expansion of a polyglutamine tract within the protein ataxin-3.

A  battery  of  behavioral  tests  was  used  to  assess  disease progression.  In

spite  of  activating  autophagy,  as  suggested  by  the  increased  levels  of

Beclin-1,  Atg7,  and  LC3-II,  and  a  reduction  in  the  p62  protein  levels,

lithium administration showed no overall  beneficial effects in  this model

concerning  motor  performance,  showing  a  positive  impact  only  in  the

reductionof tremors at 24 weeks of age. Our results do not support lithium

chronic treatment  as  a promising strategy for  the treatment of  Machado-

Joseph disease (MJD).
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Introduction

Lithium, a monovalent cation and a FDA-approved drug with the ability to

cross the blood–brain barrier, has been used in the past 6 decades for the

treatment of bipolar disorder(BD) and also adjunctively with mood stabilizers

and antidepressants to enhance, prolong, and facilitate treatment response and

remission of mood disorders [1 , 2 ]. Although its therapeutic mechanisms

remain unclear, strong in vivo and in vitro evidence suggests that lithium has

neurotrophic/neuroprotective properties toward a wide range of insults, and

also in neurodegenerative diseases [3 , 4 ]. Lithium inhibits glycogen synthase

kinase-3 [5 , 6 ] and increases the protein levels of the brain-derived
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neurotrophic factor (BDNF) [7 , 8 ], leading to an enhanced cell survival.

Lithium also regulates calcium homeostasis and suppresses calcium-

dependent activation of pro-apoptotic signaling pathways [ 9 ], and it can

protect against endoplasmic reticulum (ER) stress [10 ], associated with

impaired synaptic plasticity and pathology in neurodegenerative conditions,

such as Alzheimer’s disease (AD) [11 ]. In order to be effective, lithium

requires long-term treatment, and its effects are not reverted immediately after

discontinuation. For this reason, it is thought that lithium acts at the gene

expression level. Indeed, lithium is able to upregulate the expression of

important molecules such as HSP70 [ 12 , 13 ], BCL-2 [9 , 14 , 15 ], BDNF [7 ,

8 , 16 ], HSF1 [13 ], and CREB [4 ], among others. Moreover, lithium

decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol

phosphatases [17 , 18 ]; this was proposed as a novel mechanism to induce

autophagy [19–21 ]. Macroautophagy, commonly referred to as autophagy, is

an important process for the degradation of proteins and organelles and plays

a major role in cellular stress conditions [22 ]. It is also involved in neuronal

and astrocytic cell survival and function [23 ]. The process of autophagy

begins with the formation of double-membrane structures called

autophagosomes that fuse with lysosomes (autolysosomes) and lately degrade

their contents by lysosomal hydrolytic enzymes [24 , 25 ]. Autophagy recycles

cytoplasmic proteins in normal conditions and recycles nutrients when

necessary, for instance, under starvation. The accumulation of misfolded

proteins in cells is a common feature in aging and in several

neurodegenerative disorders [26 ], which makes autophagy a prominent target

for the treatment of such diseases; these include amyotrophic lateral sclerosis

(ALS), Parkinson disease (PD), AD, Huntington’s disease (HD), and

Machado-Joseph disease (MJD) [27–37 ]. Drugs that potentially modulate

autophagy are increasingly being used in clinical trials, and screens are being

performed for the discovery of new compounds that induce autophagy.

Autophagy is modulated by several signaling pathways and is directly

inhibited by the serine/threonine protein kinase mammalian target of

rapamycin (mTOR) [38 ]. Administration of rapamycin has been demonstrated

to be beneficial in different animal models of neurodegenerative disorders, by

enhancing autophagic function [24 , 29 , 36 , 39 , 40 ]. Autophagy can also be

regulated independently of mTOR, which can be achieved through lithium,

sodium valproate, and carbamazepine, compounds that lower myo-inositol-

1,4,5-triphosphate levels [20 , 41 ]. Lithium acts as an autophagy enhancer or

inhibitor, depending on the dosage. At higher doses, it inhibits GSK3β, which

suppresses autophagy [42 ]; in contrast, at lower doses, it inhibits IMPAse,
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inducing autophagy [20 ].

Chronic lithium treatment was tested in several models of neurodegenerative

diseases. Lithium was shown to have beneficial effects in patients and also in

an ALS mouse model [43 , 44 ]. The study in the mouse model demonstrated

neuroprotection by lithium, which delayed disease onset and duration and

increased lifespan. In the clinical trial, a randomized study of adults with ALS

showed that none of the patients treated with lithium died during the

15 months of the follow-up, and the disease progression was markedly

attenuated [44 ]. In a mouse model of HD, this treatment had variable effects;

lithium improved the motor performance and reduced depressive-like

behavior, but only when administered post-symptomatically [45 ];

furthermore, it had no effect on survival in this model [45 ]. Chronic treatment

with lithium also improved neurological function and hippocampal dendritic

arborization in a mouse model of SCA1 [46 ]. More recently, chronic lithium

treatment was shown to ameliorate the phenotype of a MJD Drosophila

model, partially by inhibiting GSK3β [ 47 ].

Taking into account the beneficial effects of lithium and its autophagy

induction properties, and considering that little is known about its possible

effects in MJD, we performed chronic lithium treatment in the CMVMJD135

mouse model [48 ]. Our results show limited beneficial effects of lithium

treatment;: Aalthough it subtly improved a few of the symptoms observed at

specific time points, it was not able to globally improve motor function in this

model. These findings do not support the idea that lithium is a good candidate

to treat MJD. This is of clinical relevance, since one may avoid the collateral

effects of trying lithium therapy in MJD patients.

Material and Methods

Transgenic Mice

We used the CMVMJD135 mice [48 ], which express an expanded version of

the human MJD1-1 cDNA (the 3 UIMs-containing variant of ATXN3) under

the regulation of the CMV promoter (ubiquitous expression) at

near-endogenous levels. All animals were maintained under standard

laboratory conditions: an artificial 12-h light/dark cycle (lights on from 8:00

to 20:00 h), with an ambient temperature of 21 ± 1 °C and a relative humidity

of 50–60 %; the mice were given a standard diet (4RF25 during the gestation

and postnatal periods, and 4RF21 after weaning, Mucedola SRL, Settimo
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Milanese, Italy) and water ad libitum. All procedures were conducted in

accordance with European regulations (European Union Directive 86/609

/EEC). Animal facilities and the people directly involved in animal

experiments (S.D.S, A.N.C) were certified by the Portuguese regulatory entity

—Direcção Geral de Veterinária. All of the protocols performed were

approved by the joint Animal Ethics Committee of the Life and Health

Sciences Research Institute, University of Minho. Health monitoring was

performed according to FELASA guidelines [49 ], confirming the Specified

Pathogen Free health status of sentinel animals maintained in the same animal

room. Humane endpoints for experiment were defined (20 % reduction of the

body weight, inability to reach food and water, presence of wounds in the

body, dehydration), but not needed as the study period was conceived to

include ages at which animals do not reach these endpoints.

Mouse Genotyping

The progenies produced by mating MJD transgenic with wild-type animals

were genotyped at weaning by PCR, as previously described [ 50 ].

Drug Treatment and Behavioral Tests

Male mice were used in the study since they show less variability than

females in behavioral tests, due to the more variable hormonal female status.

Transgenic and non-transgenic, drug- and vehicle-treated animals were housed

at weaning in groups of five animals per cage. The experiment started at

4 weeks and ended at 24 weeks of age. At 4 weeks of age, we screened the

overall status of the animals by the SHIRPA protocol before starting the

treatment with lithium chloride (LiCl, Merck, Massachusetts, USA). The

treatment started at the asymptomatic age of 5 weeks, 1 week before the

previously observed onset of symptoms [48 ].

We used a total of 40 animals, which were housed according to the drug

administered, since the experiment was carried out by a single experimenter,

which was only blind to the genetic status of the animals. The animals were

intraperitoneally injected three times per week, except in the week of

behavioral tests. Transgenic and non-transgenic littermates (n = 10 for each

genotype) were treated with 10.4 mg/kg of lithium chloride as previously

described [44 , 45 ]. Control littermate animals were given a vehicle injection

of buffer (0.15 M NaCl, 5 % Tween-20, and 5 % PEG 400) with the same

frequency. The animals were evaluated at 20 and 24 weeks of age in the Beam

Walk Balance test. The SHIRPA protocol was performed at all ages tested. For

e.Proofing http://eproofing.springer.com/journals/printpage.php?token=pxuonN2...

5 de 37 08/08/2014 14:20



a detailed description of behavioral testing, see below.

Body Weight

All mice were weighed a week before the start of the drug treatment (4 weeks)

and then at 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, and 20 weeks of age.

Beam Walk Balance Test

The beam walk balance test assesses balance but is also sensitive to fine

motor coordination. This test measures the ability of the animal to stay upright

and to walk on an elevated beam without falling to the cushioned pads below,

or slipping to one side of the beam. The beams are 70 cm long and made of

smooth wood with a square (12 mm wide) or a round (11- and 17-mm

diameter) shape. The beam is placed at the height of 50 cm. The test has

different levels of difficulty obtained by varying the shape and width of the

beams. The animals were trained during 3 days in the square beam (12 mm).

In the fourth day, they were tested in the training beam and also in two round

beams (17 and 11 mm).

The animal is placed on one end of the beam and then allowed to walk along

the beam and reach the opposite end (which has a “safe” dark box). At the end

of the training days, the animals should be capable of performing the task in

less than 20 s. By day 4, animals were tested using two beams of different

width and shape (square and round). If the animal fell or turned around in the

beam, this was considered one failed trial. Each animal had the opportunity to

fail two times in each beam. The time the animal took to cross the beam was

counted, and time was discounted if the animal stopped in the beam.

SHIRPA Protocol

We established a protocol for phenotypic assessment based on the primary

screen of the SHIRPA protocol, which mimics the diagnostic process of

general neurological and psychiatric examination in humans [51 ]. Each

mouse was placed in a viewing jar (15-cm diameter) for 5 min and transferred

to a 15-labeled-squares arena (55 × 33 × 18 cm), and then a series of

anatomical and behavioral features were registered. The full details of the

SHIRPA protocol are available at the site http://empress.har.mrc.ac.uk

/browser/?sop_id=10_002_0 . In addition, we included the footprint pattern

test (see below) to assess gait [ 52 ] and the counting of rears over 5 min in the

viewing jar, as a measure of spontaneous vertical exploratory activity. The

protocol was adjusted in order to minimize animal handling and to generate
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uniformity in waiting times between the tests [53 ].

Footprint Pattern

The footprint test was used to evaluate the foot dragging of the animals. To

obtain footprints, the hindpaws and forepaws of the mice were coated with

black and red non-toxic paints, respectively. A clean rectangular paper sheet

was placed on the floor of the runway for each run. The animals were then

allowed to walk along a 100 cm long × 4.2 cm width × 10 cm height corridor

in the direction of an enclosed black box. Each animal was allowed to achieve

one valid trial per age. To evaluate the presence of foot dragging through age,

the footprinting pattern of CMVMJD135 and wild-type (wt) vehicle- and

lithium-treated (n = 10 per group) was analyzed at each time point considering

six consecutive steps (absent, no dragging; present, at least one step out of six

shows dragging).

AQ3

Assessment of Autophagy Activation

The animals that were chronically treated with LiCl for 19 weeksand were

killed 12 h after the last injection as previously described [48 ], and the brain

and muscle tissue were immediately frozen in dry ice. We also injected

wild-type animals with LiCl (10.4 mg/kg) three times in 1 week in alternate

days and performed the killing at different time points after the last injection:

6, 14, 16, 18, and 24 h for determination of acute effects. Another set of

animals was injected with the vehicle and killed at the same time points.

AQ4

Western Blot

Brain tissue was homogenized in cold 0.1 M Tris–HCl, pH 7.5, 0.1 M EDTA,

and a mixture of protease inhibitors (Complete, Roche, Swiss) and was

sonicated for 10 s. Protein concentration was determined using the Bradford

assay (Biorad, CA, USA). Samples were heated for 5 min at 100 °C and

microfuged for 10 s before loading. For each sample, 15 μg of total protein

was loaded into SDS-PAGE gels and then transferred to nitrocellulose

membranes (Amersham GE Healthcare, UK). After incubation with the

primary antibodies—rabbit anti-LC3 (1:1,000 Novus Biologicals, Littleton,

CO), rabbit anti-IMPA1 (1:1,000, Abcam, Cambridge, UK), rabbit anti-p62

(1:50, Abcam, Cambridge, UK), rabbit anti-Beclin-1 (1:1,000, Cell signaling,

Beverly, MA), rabbit anti-Atg7 (1:1000, Cell signaling, Beverly, MA), mouse
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anti-alpha-tubulin (1:100, DSHB, University of Iowa, Iowa), and mouse

anti-beta-actin (1:100, DSHB, University of Iowa, IA)—the secondary

antibodies were incubated at the following dilutions: anti-rabbit (1:10.000,

Santa Cruz, Dallas, TX, USA) and anti-mouse (1:10.000, Santa Cruz, Dallas,

TX, USA). Antibody affinity was detected by chemiluminescence (ECL kit,

Santa Cruz, Dallas, Texas, USA). Band quantification was performed using

the ImageJ software according to the manufacturer’s instructions, using alpha-

tubulin as the loading control.

Determination of Lithium Plasma Levels

The plasma lithium levels were measured applying the LITH assay using the

Dimension Vista® System (LITH Flex® reagent cartridge)–SIEMENS.

Statistical Analysis

Power analysis was used to determine the sample size [ 54 ]. Considering the

different variables under study, such as weight and time held in the hanging

wire, assuming a power of 0.8 and a significance level of 0.05, different

required sample sizes were obtained, depending on the specified smallest

detectable difference and the variability of the experimental groups. Based on

these calculations and bearing in mind that as the age of the animals increases,

also the mean differences increase and, possibly, the standard deviations, a

sample size ranging between five and ten animals was obtained, and therefore,

a sample of ten animals was chosen. For specific behavioral tests and time

points of analysis, see Supplementary Table S1 .

Continuous variables with normal distributions (K-S test p > 0.05) were

analyzed with the Student’s t test or two-way ANOVA (factors: genotype and

treatment). Behavioral data were subjected to the non-parametric

Mann–Whitney U test when variables were non-continuous or when a

continuous variable did not present a normal distribution (Kolmogorov-

Smirnov test p < 0.05). Categorical variables in the SHIRPA protocol were

analyzed by contingency tables (Fisher’s exact test). All statistical analyses

were performed using SPSS 22.0 (SPSS Inc., Chicago, IL). A critical value

for significance of p < 0.05 was used throughout the study.

Results

In the CMVMJD135 transgenic mouse model, mutant ataxin-3 expression is

close to the endogenous levels and the MJD-like symptoms are progressive in
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life, as observed in human patients [48 ]. In the current study, we confirmed

the onset of the neurological phenotype at 6 weeks of age, with loss of grip

strength, measured using the hanging wire test. At 20 weeks of age, the

animals showed a deficit in balance on the beam test. It was also possible to

observe tremors, foot dragging, and limb clasping. Furthermore, they

exhibited decreased locomotor and exploratory behavior late in life. This

model does not show premature death, allowing long-treatment periods—in

the present case, treatment was administered for 19 weeks, i.e., until the age

of 24 weeks, when animals display overt symptoms and a full-blown

neurological phenotype.

Autophagy Is not Altered in the Brain of CMVMJD135 Mice

At basal conditions, autophagic activity in 24-month-old CMVMJD135 mouse

brains did not differ from that of littermate controls (Fig. 1a). Autophagy was

assessed by the measurement of protein levels of LC3-II (Fig. 1b ), an

autophagosome marker; of Beclin-1 (Fig. 1c ), a protein involved in the

nucleation step of autophagy; of Atg7 (Fig. 1d ) involved in the elongation

step of this process; of p62 (Fig. 1e ), an autophagy substrate; and of IMPA1

(Fig. 1f ), an enzyme responsible for the provision of inositol required for

synthesis of phosphatidylinositol and polyphosphoinositides. Our results

suggest that autophagy is neither impaired nor over-activated in this

transgenic mouse model of MJD.

Fig. 1

Autophagy basal levels in CMVMJD135 mice. a Representative Western blot

probed with LC3, Beclin-1, Atg7, p62, IMPA1, and tubulin antibodies. At least

three technical replicates were performed. b–f LC3-II, Beclin-1, Atg7, p62, and

IMPA1 protein levels were measured in brain lysates of CMVMJD135 mice (n 

= 5) and their littermate wild type (n = 5) at 24 months of age. LC3-II protein

levels were normalized both for LC3-I and α-tubulin; Beclin-1, Atg7, p62, and

IMPA1  were  normalized  for  α-tubulin.  *p < 0.05;  **p < 0.01;  ***p < 0.001

(Student’s t test)
AQ5
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Lithium Chloride Induces Autophagy in the Mouse Brain

In order to verify if lithium chloride could induce autophagy at the dosage we

planned to administer (10.4 mg/kg), similar to that used by Fornai et al. [ 44

and Wood and Morton 45 ], we used a group of wild-type mice, injected them

with lithium chloride [45 ] three times per week, and measured the levels of

autophagy markers in the brain at different time points after the last injection

(6, 14, 16, 18, and 24 h post-injection). In these mice, in which the mean

plasma lithium concentration achieved was 0.3 ± 0.09 mmol/L, we were able

to observe an increase in the LC3-II/LC3-I ratio (Fig. 2a ) and a decrease in

IMPA1 (Fig. 2b) , an enzyme whose expression is directly inhibited by

lithium. According to the Guidelines for the use and interpretation of assays
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for monitoring autophagy in higher eukaryotes [ 55 ], LC3 is the only marker

for autophagosomes, but in mammalian cells, total LC3 protein levels may not

be altered after a cellular challenge; the most probable finding is the increase

in the conversion of LC3-I to LC3-II. LC3-I is abundant and stable in the

central nervous system, which is a parameter to take in consideration in this

type of measurements [55 ]. Importantly, the LC3-II/LC3-I ratio was increased

at the protein level in the brain of lithium-treated mice (Fig. 2a). We also

found an increase in LC3-II/LC3-I ratio in muscle tissue (data not shown).

Consistently, Beclin-1, a protein involved in the nucleation step of the

autophagosome formation [56 ], was also increased in animals treated with

LiCl, supporting autophagy induction by this treatment (Fig. 2b ).

Furthermore, the levels of Atg7, a protein involved in the elongation step of

autophagosome formation, were also increased in the LiCl-treated animals

(Fig. 2c ). The decrease in p62 levels confirms that autophagy was occurring

without blockage (Fig. 2d ). The levels of IMPA1 were, as expected,

decreased (Fig. 2e ).

Fig. 2

Autophagy induction by acute lithium treatment. a Anti-LC3 Western blot of

brain  lysates  of  wild-type  animals  injected  with  vehicle  (n = 4)  or  lithium

10.4 mg/kg (n = 4 for each time point); b Beclin-1 Western blot of brain lysates

of wild-type animals injected with vehicle (n = 4) or lithium 10.4 mg/kg (n = 4

for each time point); c Atg7 Western blot of brain lysates of wild-type animals

injected with vehicle (n = 4) or lithium 10.4 mg/kg (n = 4 for each time point); d
p62 Western blot of brain lysates of wild-type animals injected with vehicle (n 

= 4) or lithium 10.4 mg/kg (n = 4 for each time point); e anti-IMPA1 Western

blot analysis of brain lysates of wild-type animals injected with vehicle (n = 4)

or lithium 10.4 mg/kg (n = 4 for each time point); lithium-injected animals were

killed  at  different  time points  as  shown in  the  graph;  vehicle  animals  were

killed  6  h  post-injection.  Alpha-tubulin  or  beta-actin  was  used  as  loading

control. *n p< 0.05; **n p< 0.01; *** n < 0.001 (Student’s t test)
AQ6

AQ7

e.Proofing http://eproofing.springer.com/journals/printpage.php?token=pxuonN2...

11 de 37 08/08/2014 14:20



To complement these analyses, we measured the levels of autophagy markers

in the brain of the transgenic animals that were chronically treated with LiCl,

namely, the LC3-II/LC3-I ratio (Fig. 3a ), as well as protein levels of Beclin-1
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(Fig. 3b ), Atg7 (Fig. 3c ), p62 (Fig. 3d ), and IMPA1 (Fig. 3e ), and the results

were similar to those observed for the acute LiCl treatment, confirming that

autophagy remains induced in the chronically treated animals.

Fig. 3

Autophagy  induction  by  lithium  in  chronically  treated  transgenic  mice  at

24 weeks of age. a Anti-LC3 Western blot of brain lysates of transgenic animals

injected with vehicle (n = 4) or lithium 10.4 mg/kg (n = 4); b Beclin-1 Western

blot  of  brain  lysates  of  transgenic  animals  injected  with  vehicle  (n = 4)  or

lithium 10.4 mg/kg (n = 4); c Atg7 Western blot of brain lysates of transgenic

animals  injected  with  vehicle  (n = 4)  or  lithium  10.4  mg/kg  (n = 4);  d  p62

Western blot of brain lysates of transgenic animals injected with vehicle (n = 4)

or  lithium 10.4  mg/kg (n = 4);  e  anti-IMPA1 Western  blot  analysis  of  brain

lysates of transgenic animals injected with vehicle (n = 4) or lithium 10.4 mg/kg

(n = 4); alpha-tubulin or beta-actin was used as loading control. *p < 0.05; **p 

< 0.01; *** p < 0.001 (Student’s t test)
AQ8
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Intriguingly, and despite the efficacy of LiCl to induce autophagy, it did not

reduce the protein levels of mutant human ataxin-3 in the brain of LiCl-treated
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animals, which were comparable to those of vehicle-treated mice

(Supplementary Fig. S1 ).

Lithium Did not Improve Body Weight Loss in
CMVMJD135 Mice

We assessed the phenotype of the mice from 4 to 24 weeks of age (Fig. 4a ).

Animals were weighed at 4 (before the treatment) 5, 6, 8, 9, 10, 12, 13, 14, 16,

17, 18, and 20 weeks of age. One of the known collateral effects of lithium

treatment in human patients is weight gain [57 ], but we did not observe this

in our study. Chronic administration of LiCl had no effect on body weight in

wt animals, compared with wt animals treated with vehicle. At 12 weeks of

age, vehicle-treated CMVMJD135 mice started to lose weight compared to the

vehicle-treated wt animals (p = 0.024) as previously observed for this model

[ 48 ] (genotype: F  = 9.919; p = 0.003) and asit is known to occur in human

patients [58 ]; this body weight reduction was progressive in time, as shown in

Fig. 4b . No differences were found between vehicle- and lithium-treated

transgenic animals, i.e., lithium treatment did not improve this body weight

reduction.

Fig. 4

Effect of lithium treatment on body weight and strength of CMVMJD135 and

wt mice. a Schematic timeline for the behavioral analysis of lithium pre-clinical

trial. b The body weight in grams between 8 and 20 weeks of age was depicted

for wt and CMVMJD135 mice treated with LiCl or  vehicle (n = 10 for  each

group).  c  Hanging  wire  test—all  transgenic  animals  display  a worse

performance  in  holding  the  grid  with  age  (from 8  to 24  weeks  of  age).  A

maximum time of 2 min was given to each animal and the time that they took to

fall was registered (n = 10 for each group). Symbols represent mean ± SEM of

the different  groups.  *p < 0.05;  ** p < 0.01; *** p < 0.001,  for  genotype factor

(two-way ANOVA)
AQ9
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Lithium Treatment Had no Major Effect on Neurological
Deficits Present in CMVMJD135 Mice

We analyzed all the animals using the SHIRPA protocol [51 ] before the

treatment onset, at 4 weeks of age, and no differences were found between wt

and CMVMJD135 animals (data not shown), meaning that at this time point,

the transgenic animals did not show any symptoms of disease.

The first disease manifestation in the CMVMJD135 model is the loss of limb

strength given by the hanging wire test, which measures the time the mouse is

able to hold a grid with its hindlimbs and, mostly, forelimbs, before falling.
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Whereas wild-type animals—treated and vehicle groups—were almost always

able to complete the task (hanging in the grid for the maximum time, 2 min),

transgenic animals—both LiCl- and vehicle-treated groups—showed a

decreased latency to fall from the grid, worsening with age (genotype: F  = 

324.589; p = 1.6628 × 10 ) (Fig. 4c ).

At 16 weeks and subsequent ages, CMVMJD135 vehicle-treated animals

showed a decrease in exploratory behavior, given by the infrequent rearing

behavior, which progressed to almost no rearing at the age of 24 weeks (p < 

0.05). At 8 weeks of age, lithium-treated CMVMJD135 animals showed an

increase in exploratory behavior when compared with vehicle-treated

CMVMJD135 animals, given by the increase in number of rears in the

viewing jar (p = 0.026). This activity reached that of the vehicle-treated wt

animals at this age, but at later stages, the improvement was no longer seen

(Fig. 5a ). To further test exploratory locomotor activity, we counted the

number of squares travelled in the arena used in the SHIRPA protocol.

CMVMJD135 treated with vehicle showed a decrease in the number of

squares travelled in the arena at 20 and 24 weeks of age (p = 0.003 and p = 

0.002, respectively), which was not improved by chronic lithium treatment

(Fig. 5b ).

Fig. 5

Effect  of  lithium  treatment  upon  spontaneous  exploratory  activity  and  gait

quality. a  Transgenic animals display decreased vertical locomotor activity at

16 weeks of age and subconsequent ages (n = 10 for each group); b Transgenic

animals travel less in the arena than wild-type animals at 20 and 24 weeks of

age; lithium treatment had no effect in this phenotype (n = 10 for each group). c
CMVMJD135  animals  have  abnormal  gait  at  20  and  24  weeks  of  age

(qualitative assessment) that is slightly reverted by LiCl at 24 weeks, although

not statistical significant (n = 10 for each group). d Quantitative analysis of the

foot  dragging:  Presence/absence  of  dragging  demonstrated  that  transgenic

animals drag their feet since 12 weeks of age, which was not ameliorated by

LiCl (n = 10 for each group). *p < 0.05; **p < 0.01; ***p < 0.001

1,39
−20
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We also performed qualitative analysis of the gait in the open arena as

described by Rogers et al. [ 51 ]. We scored the animals with 0 when their gait

was normal, 1 when the animal had a fluid stepping but an abnormal walking,

and 2 when the animal had limited walking [ 51 ]. CMVMJD135 animals

started to have significantly worse gait scores at the age of 20 weeks (p = 

0.029), and at 24 weeks of age, 100 % of the animals had a visibly abnormal

gait (80 % of the animals were scored as 1, 10 % as 2, and 10 % as 0, p = 

0.000017) (Fig. 5c ). There was a trend toward improvement with lithium

treatment, but only at 24 weeks of age (80 % of the vehicle transgenic animals

were scored as having abnormal gait, in contrast with 67 % of the treated

transgenic animals, p = 0.054) (Fig. 5c ). Additionally, we performed a

semi-quantitative analysis of the foot dragging observed in the mice (Fig. 5d ).
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We found no significant differences in the footstep measurements between the

four groups at the ages tested, but it was possible to observe that

CMVMJD135 animals presented foot dragging at 12 weeks (p = 0.00002) and

that this symptom progressed in severity with age (p < 0.05). At 20 weeks of

age, all CMVMJD135 mice (100 %, p = 2 × 10 ) dragged their feet while

walking. Lithium was not able to rescue this phenotype.

When mice are picked up by the tail and suspended toward a surface, their

normal reflex is to extend all the four paws to anticipate the ground [59 ]. The

paw clasping phenotype, in which the animals contract the paws instead of

extending them, is observed in several mouse models with damage in the

cerebellum [60 , 61 ] or in the basal ganglia [ 62 , 63], and also in models of

AD [64–66 ]. In CMVMJD135 mice, this paw clasping phenotype was

detected at 24 weeks of age (p = 2 × 10 ), whereas wt animals never

presented this abnormal reflex (Fig. 6a ). Lithium treatment was not able to

rescue this aspect of the phenotype (Fig. 6a).

Fig. 6

Effect of lithium treatment on limb clasping and tremors. a Limb clasping is

observed in transgenic animals—treated and non-treated—at 24 weeks of age

(n = 10 for each group). b CMVMJD135 mice presented tremors since 16 weeks

of age; LiCl is able to decrease tremors in transgenic animals at 24 weeks of age

(n = 10 for each group). *p < 0.05; **p < 0.01; ***p < 0.001 (Fisher’s exact test)

−5

−6
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We also observed an increase in the percentage of transgenic animals

presenting tremors through age, starting at 16 weeks of age (p < 0.05), which

was, surprisingly, ameliorated with lithium treatment, this improvement being

significant only after a long period of administration (24 weeks of age, p = 
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0.02) (Fig. 6b ).

Lithium Fails to Rescue Balance and Fine Motor Deficits in
CMVMJD135 Mice

The balance beam test depends on the mouse’s ability to maintain balance

while traversing a narrow beam to reach a safe platform [67 ] and was used to

test the balance and fine motor coordination capabilities in CMVMJD135 and

wt animals, treated with LiCl or with the vehicle. At 20 weeks, CMVMJD135

animals were slower to traverse the round beams with 17 mm (genotype: F  

= 8.96; p = 0.005; genotype × treatment: F  = 5.260; p = 0.029) and 11 mm

of diameter (genotype: F  = 4.447; p = 0.042), but not significantly slower

in the 12-mm square beam, in which they had been trained; the difficulty in

performing this task was confirmed at 24 weeks of age, when transgenic

animals were slower in traversing the 12-mm square beam (genotype: F  = 

6.412; p = 0.016), the 17-mm round beam (F = 5.315; p = 0.028), and the

11-mm round beam (genotype: F = 5.041; p = 0.032) (Fig. 7 ). In the

11-mm round beam, transgenic mice showed a “crawling behavior” (when the

animal’s thorax and abdomen are in contact with the beam surface) and

dragged themselves across the beam. Lithium had no significant effects in the

performance in the beam of either wt or CMVMJD135 mice.

Fig. 7

Effect  of  lithium  treatment  on  balance  and  motor  coordination.  Each  bar

corresponds to the mean of two consecutive trials in each beam. The time to

traverse the beam was videotaped and then measured by the same experimenter.

Ten to 12 animals were used for each condition. *p < 0.05 for genotype factor

(two-way  ANOVA);  #p < 0.05  for  genotype × treatment  factor  (two-way

ANOVA)
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Discussion

One promising therapeutic strategy in diseases associated with misfolded

protein accumulation is the stimulation of cellular degradation pathways such

as macroautophagy. Here we have tested the effect of authophagy activation

by lithium in a mouse model of MJD, beginning at a pre-symptomatic age.

In this study, we confirmed the progressive neurologic phenotype of the

CMVMJD135 mouse model, through observation of the group of vehicle-

treated animals, which behaved as previously described [48 ]. Chronic lithium

treatment was, however, not able to rescue the neurological phenotype of

these mice. The disease-causing polyQ CAG repeat expansion in ataxin-3

might cause neurotoxicity both through a toxic gain of function and a loss of

the wild-type ataxin-3 normal function(s) [68 ]. Several molecular pathways

might be involved in MJD neuropathology, although the precise pathogenic

mechanism(s) is (are) not known [69 , 70 ]. Decreased autophagy is a cellular

process that might be included in these mechanisms [36 , 37 , 71 ]. An

autophagy impairment was recently proposed to occur in a mouse model of

MJD, as well as in the brain of MJD patients [37 ]. MJD pathogenesis has

been modeled through the expression of mutant ataxin-3 that causes aggregate

formation and toxicity, in cell models and in vivo [72 ], and autophagy has

been shown to be an effective cellular strategy for the clearance of these

aggregated proteins [73 , 74 ]. Menzies and colleagues demonstrated that

autophagy induction by rapamycin could improve rotarod performance in a

transgenic mouse model of MJD [36 ]; however, the MJD model used in this

study presented a very mild phenotype (not significantly different from

control mice from a statistical standpoint), and the authors proposed that this

hypothesis should be further confirmed in a model with more marked

phenotype. Also, in this study, the authors suggest that it would be of great

importance to test other compounds that can induce autophagy, such as

lithium. Here, we provide a complete behavioral analysis of the CMVMJD135

mouse model chronically treated with lithium chloride.

At basal conditions, it was not possible to observe significant differences in

protein levels of LC3-II, Beclin-1, Atg7, p62, and IMPA autophagy markers

when comparing CMVMJD135 with wild-type animals at 24 weeks of age

(when they have a well-established phenotype), suggesting that, in spite of the

neurodegenerative changes they show [48 ], the autophagy process is

functioning normally in the brain of these mice. This is in contrast with the
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findings in another transgenic mouse model of MJD, characterized by more

marked overexpression of ataxin-3 and a faster disease progression [75 ],

where it has been proposed that autophagy was over-activated but functional

only at early stages of the disease [37 ].

Given the previous results in other related neurodegenerative diseases and our

own results with 17-DMAG, which delayed disease progression the

CMVMJD135 mouse and induced autophagy[ 48 ], we reasoned that even if

autophagy is normal in these mice, it might be useful to boost the cells’

capacity to eliminate toxic ataxin-3 aggregates; hence, we proceeded with

chronic lithium treatment in the CMVMJD135 mice. In this study we selected

to use a dosage at the lower limit of the therapeutic range in order to avoid

cerebellar toxicity as much as possible. The efficacy of lithium as an

autophagy inducer in the brain was validated by the decrease in protein levels

of IMPA-1, induction of Beclin-1 and Atg7 protein levels, increased

LC3-II/LC3-I ratio, and decrease in p62 in treated CMVMJD135 mice. Our

reason for studying treatment of the CMVMJD135 mice before onset of the

symptoms was to have the strongest effect possible in the disease progression

and to see if we could prevent or delay the onset of the disease rather than

treat it once established, as mechanistically, we anticipated that it would be

harder to remove the larger nuclear inclusions than smaller cytoplasmic

aggregates. Considering the availability of a genetic test for MJD patients,

this early stage treatment design could be feasible for mutation carriers even

before they present clinical symptoms.

At the phenotypic level, LiCl treatment did not rescue the loss of body weight

observed in CMVMJD135 animals. Progressive weight loss is observed in

MJD patients [58 ], despite a normal appetite [76 ] and also in HD patients

[77 ]. It has been reported previously that treatment with LiCl

pre-symptomatically caused loss of body weight in a HD mouse model,

whereas a gain of body weight was observed when LiCl treatment was

performed in post-symptomatic animals [45 ]. We have not observed loss or

gain of body weight as result of the treatment here performed, which was

initiated 1 week before symptom onset. Intriguingly, at 8 weeks of age,

lithium-treated CMVMJD135 animals showed an increase in exploratory

behavior when compared with vehicle-treated CMVMJD135 animals, given

by the increase in number of rears in the viewing jar. This activity reached the

levels of vehicle-treated wt animals. We believe that this apparent (and

transient) amelioration might have been due to an improved reaction to the
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novelty of the test (i.e., an effect in mood) and not because lithium was having

benefic effects at the motor level, since this rescue of hypoactivity was not

manifested in other motor parameters and was not maintained through life.

The tremors observed in CMVMJD135 mice were ameliorated with lithium

treatment, this improvement being statistically significant only after a long

period of lithium administration. This is an intriguing finding because tremors

are often observed in BD patients taking lithium for long periods [78 ], being

a side effect of this drug. Additionally, tremors are not a major symptom in

MJD patients, but rather a rare manifestation [79–81 ] that can be treated with

levodopa or dopamine agonists [82 ]. Thus, the tremor rescue by lithium

treatment that we observed in CMVMJD135 mice at one of the time points of

analysis might not have a major impact in human patients.

Gait analysis was performed using qualitative analysis, given by the “the way

animals walk” in the arena—scored by the experimenter, as part of the

SHIRPA protocol [ 51 ]—and by the footprinting analysis [52 ], respectively.

In the qualitative gait analysis, vehicle-treated CMVMJD135 animals showed

visible deficits in gait at 20 and 24 weeks of age. In the last time point of

analysis (at 24 weeks), LiCl treatment appeared to improve the visible quality

of gait, but this effect was not statistically significant.

Regarding balance (balance beam test), abnormal reflexes (limb clasping), and

strength/fine motor coordination (hanging wire test), it was also not possible

to observe any amelioration of CMVMJD135 mice with lithium treatment. Of

notice, the number of animals used in the study allowed detection of a 50 %

effect size for all tests for at least one age, with the exception of the medium

square and small circle beams in the balance beam test and the exploratory

locomotor activity in the SHIRPA protocol (Supplementary Table S1).

Lithium was shown to have beneficial effects in motor performance (given by

rotarod analysis) in a transgenic mouse model of SCA1 [46 ] but had no effect

in motor performance in a HD mouse model when administered

pre-symptomatically [45 ]. The current study demonstrates that long-term

peri-symptomatically initiated lithium treatment had no major effects in a

mouse model of MJD. Depending on the concentration, lithium has

well-established collateral effects. At least, in mice, these side effects may be

the result of differences in the ability of some individual mice to clear LiCl

from the plasma. In humans, at a dose of 1.5 mEq/L the side effects are

considered mild, but anorexia [83 ], tremors [84 ], nausea, diarrhea, vertigo,
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confusion (American Psychiatric Association 2002), and cognitive impairment

can occur [85 ]. Of relevance to this pathology, irreversible cerebellar toxicity

due to lithium intoxication has long been recognized and can lead to ataxia,

nystagmus, and dysarthria [86 ]. The pathophysiology of lithium-related

ataxia appears to be related with loss of Purkinje cells in the cerebellum, with

sparing of the surrounding basket cells [87 ]. Clinicians are aware of these

risks and monitor lithium plasma levels of the patients’ closely. Side effects

need to be carefully analyzed since lithium can cause cerebellar toxicity even

at so-called therapeutic levels [88 ].

While completing the experiments for this article, a human clinical trial with

lithium carbonate was performed in MJD patients ( http://clinicaltrials.gov

/ct2/show/record/NCT01096082 ). This study demonstrated that lithium (at a

dose of 0.5–0.8 mEq/L) was safe and well tolerated by patients during the trial

period, but the disease progression was not improved after 48 weeks of

follow-up, given by the Neurological Examination Score for the Assessment

of Spinocerebellar Ataxia (NESSCA) and the Scale for the Assessment and

Rating of Ataxia (SARA) scales. However, the authors were able to show that

the patients treated with lithium had a slightly slower progression concerning

two quantitative ataxia assessment tools, the mean PATA rate and the Click

Test, as well as in the spinocerebellar ataxia functional index (SCAFI) and

composite cerebellar functional score (CCFS), when compared to patients

receiving placebo. Considering this minor improvement in a few ataxia

measures, the authors proposed that a larger number of patients should be

enrolled in a new clinical trial to clarify these results [89 ]. Although the

dosage used in our study is considerably lower than that used in the human

study, and our treatment was initiated 1 week before symptom onset, this

clinical trial is in accordance with the present study, where we could not find

improvement by chronic LiCl treatment in the coordination and ataxia

measurements, although some behavioral parameters, such as tremors and gait

quality, were slightly ameliorated. Furthermore, we used similar doses as

those administered in studies showing beneficial effects in mouse models of

ALS and HD [44 , 45 ] and confirmed that this dosage induced the expected

biological effects, namely concerning autophagy induction.

AQ10

Conclusion

In conclusion, the present study, demonstrates that chronic lithium treatment

is not able to rescue the CMVMJD135 mouse phenotype; our results do not
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support lithium treatment as a good approach for MJD, particularly as the

above mentioned side effects must be taken in consideration.
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Supplementary figure 1

Levels of human ataxin-3 in LiCl-treated animals. Anti-ataxin-3 western-blot

of  brain  lysates  of  transgenic  animals  injected with  vehicle  (veh)  (n = 4)  or

lithium chloride (LiCl) 10.4 mg/Kg (n = 4) at 24 weeks of age. Actin was used

as loading control. *, **, *** represents the p < 0.05; 0.01 or 0.001, respectively

(test-t student). (GIF 14 kb)

High resolution image (TIFF 2617 kb)

Supplementary Table 1

Sample size calculations for each behavioral test assuming a power of 0.8 and a

significance level of 0.05. (GIF 22 kb)

e.Proofing http://eproofing.springer.com/journals/printpage.php?token=pxuonN2...

27 de 37 08/08/2014 14:20



High resolution image (TIFF 2026 kb)
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