508 research outputs found

    Molecular analysis of three known and one novel LPL variants in patients with type I hyperlipoproteinemia.

    Get PDF
    Abstract Background and aims Type I hyperlipoproteinemia, also known as familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disorder caused by variants in LPL, APOC2, APOA5, LMF1 or GPIHBP1 genes. The aim of this study was to identify novel variants in the LPL gene causing lipoprotein lipase deficiency and to understand the molecular mechanisms. Methods and results A total of 3 individuals with severe hypertriglyceridemia and recurrent pancreatitis were selected from the Lipid Clinic at Sahlgrenska University Hospital and LPL was sequenced. In vitro experiments were performed in human embryonic kidney 293T/17 (HEK293T/17) cells transiently transfected with wild type or mutant LPL plasmids. Cell lysates and media were used to analyze LPL synthesis and secretion. Media were used to measure LPL activity. Patient 1 was compound heterozygous for three known variants: c.337T > C (W113R), c.644G > A (G215E) and c.1211T > G (M404R); patient 2 was heterozygous for the known variant c.658A > C (S220R) while patient 3 was homozygous for a novel variant in the exon 5 c.679G > T (V227F). All the LPL variants identified were loss-of-function variants and resulted in a substantial reduction in the secretion of LPL protein. Conclusion We characterized at the molecular level three known and one novel LPL variants causing type I hyperlipoproteinemia showing that all these variants are pathogenic

    Uric acid: an old actor for a new role

    Get PDF
    The role of uric acid as an independent risk factor for cardiovascular events is still debated. In fact, other confounding factors such as glucose intolerance, obesity, dyslipidaemia, hypertension, use of diuretics and insulin resistance may play a role in determining the increased vascular risk associated to elevated uric acid concentrations. These factors (including high uric acid) have been mentioned in one or more definitions of the metabolic syndrome. Recently, much attention has been paid to the metabolic syndrome due to its possible role as a risk factor for the development of type 2 diabetes and cardiovascular disease. The worldwide increase in the prevalence of obesity and diabetes is a reason not only for the increasing prevalence of the metabolic syndrome but also of hyperuricaemia. A better understanding of the role of uric acid in health and in disease states may help physicians to improve their performance in preventing and treating cardiovascular disease

    Evaluation of circulating sRAGE in osteoporosisaccording to BMI, adipokines and fracture risk: a pilot observational study

    Get PDF
    Background: Osteoporosis is a systemic metabolic disease based on age-dependent imbalance between the rates of bone formation and bone resorption. Recent studies on the pathogenesis of this disease identified that bone remodelling impairment, at the base of osteoporotic bone fragility, could be related to protein glycation, in association to oxidative stress. The glycation reactions lead to the generation of glycation end products (AGEs) which, in turn, accumulates into bone, where they binds to the receptor for AGE (RAGE). The aim of this study is to investigate the potential role of circulating sRAGE in osteoporosis, in particular evaluating the correlation of sRAGE with the fracture risk, in association with bone mineral density, the fracture risk marker FGF23, and lipid metabolism. Results: Circulating level of soluble RAGE correlate with osteopenia and osteoporosis level. Serum sRAGE resulted clearly associated on the one hand to bone fragility and, on the other hand, with BMI and leptin. sRAGE is particularly informative because serum sRAGE is able to provide, as a single marker, information about both the aspects of osteoporotic disease, represented by bone fragility and lipid metabolism. Conclusions: The measure serum level of sRAGE could have a potential diagnostic role in the monitoring of osteoporosis progression, in particular in the evaluation of fracture risk, starting from the prevention and screening stage, to the osteopenic level to osteoporosis

    Egr3 Dependent Sympathetic Target Tissue Innervation in the Absence of Neuron Death

    Get PDF
    Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation

    Elevated Serum Uric Acid Is Associated with High Circulating Inflammatory Cytokines in the Population-Based Colaus Study

    Get PDF
    BACKGROUND: The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor- alpha (TNF-alpha) and C-reactive protein (CRP). METHODS AND FINDINGS: This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-alpha, IL-1beta and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-alpha, CRP and IL-1beta were 355 micromol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 micromol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-alpha and CRP and negatively with IL-1beta (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P<0.05). In multivariable analyses, SUA was associated positively with CRP (beta coefficient +/- SE = 0.35+/-0.02, P<0.001), TNF-alpha (0.08+/-0.02, P<0.001) and IL-6 (0.10+/-0.03, P<0.001), and negatively with IL-1beta (-0.07+/-0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated. CONCLUSIONS: SUA was associated positively with IL-6, CRP and TNF-alpha and negatively with IL-1beta, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation

    Single Cycle Structure-Based Humanization of an Anti-Nerve Growth Factor Therapeutic Antibody

    Get PDF
    Most forms of chronic pain are inadequately treated by present therapeutic options. Compelling evidence has accumulated, demonstrating that Nerve Growth Factor (NGF) is a key modulator of inflammatory and nociceptive responses, and is a promising target for the treatment of human pathologies linked to chronic and inflammatory pain. There is therefore a growing interest in the development of therapeutic molecules antagonising the NGF pathway and its nociceptor sensitization actions, among which function-blocking anti-NGF antibodies are particularly relevant candidates

    Control Growth Factor Release Using a Self-Assembled [polycation∶heparin] Complex

    Get PDF
    The importance of growth factors has been recognized for over five decades; however their utilization in medicine has yet to be fully realized. This is because free growth factors have short half-lives in plasma, making direct injection inefficient. Many growth factors are anchored and protected by sulfated glycosaminoglycans in the body. We set out to explore the use of heparin, a well-characterized sulfated glycosaminoglycan, for the controlled release of fibroblast growth factor-2 (FGF-2). Heparin binds a multitude of growth factors and maintains their bioactivity for an extended period of time. We used a biocompatible polycation to precipitate out the [heparin∶FGF-2] complex from neutral buffer to form a release matrix. We can control the release rate of FGF-2 from the resultant matrix by altering the molecular weight of the polycation. The FGF-2 released from the delivery complex maintained its bioactivity and initiated cellular responses that were at least as potent as fresh bolus FGF-2 and fresh heparin stabilized FGF-2. This new delivery platform is not limited to FGF-2 but applicable to the large family of heparin-binding growth factors

    Serum Uric Acid Levels Are Associated with Polymorphism in the SAA1 Gene in Chinese Subjects

    Get PDF
    OBJECTIVE: Serum uric acid (SUA) is a cardiovascular risk marker associated with inflammation. The serum amyloid A protein (SAA) is an inflammatory factor and is associated with cardiovascular disease (CVD). However, the relationship between genetic polymorphisms of SAA and SUA levels has not been studied. The objective of this study was to investigate the association between SUA levels and SAA genetic polymorphisms. METHODS: All participants were selected from subjects participating in the Cardiovascular Risk Survey (CRS) study. The single nucleotide polymorphism (SNP) rs12218 of the SAA1 gene was genotyped by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The association of SUA levels with genotypes was assessed by using the general liner mode. RESULTS: The SNP rs12218 was associated with SUA levels by analyses of a dominate model (P = 0.002) and additive model (P = 0.005), and the difference remained significant after adjustment of sex, age, obesity, ethnicity, HDL-C, alcohol intake, smoking, and creatinine (P = 0.006 and P = 0.023, respectively). The TT genotype was associated with an increased SUA concentration of 39.34 mmol/L (95% confidence interval [CI], 3.61-75.06, P = 0.031) compared with the CC genotype, and the TT genotype was associated with an increased SUA concentration of 2.48 mmol/L (95% CI, 6.86-38.10; P = 0.005) compared with the CT genotype. CONCLUSIONS: The rs12218 SNP in the SAA1 gene was associated with SUA levels in Chinese subjects, indicating that carriers of the T allele of rs12218 have a high risk of hyperuricemia

    Neuregulin 1 Type III/ErbB Signaling Is Crucial for Schwann Cell Colonization of Sympathetic Axons

    Get PDF
    Analysis of Schwann cell (SC) development has been hampered by the lack of growing axons in many commonly used in vitro assays. As a consequence, the molecular signals and cellular dynamics of SC development along peripheral axons are still only poorly understood. Here we use a superior cervical ganglion (SCG) explant assay, in which axons elongate after treatment with nerve growth factor (NGF). Migration as well as proliferation and apoptosis of endogenous SCG-derived SCs along sympathetic axons were studied in these cultures using pharmacological interference and time-lapse imaging. Inhibition of ErbB receptor tyrosine kinases leads to reduced SC proliferation, increased apoptosis and thereby severely interfered with SC migration to distal axonal sections and colonization of axons. Furthermore we demonstrate that SC colonization of axons is also strongly impaired in a specific null mutant of an ErbB receptor ligand, Neuregulin 1 (NRG1) type III. Taken together, using a novel SC development assay, we demonstrate that NRG1 type III serves as a critical axonal signal for glial ErbB receptors that drives SC development along sympathetic axons
    corecore