18 research outputs found

    Human Protein Reference Database—2009 update

    Get PDF
    Human Protein Reference Database (HPRD—http://www.hprd.org/), initially described in 2003, is a database of curated proteomic information pertaining to human proteins. We have recently added a number of new features in HPRD. These include PhosphoMotif Finder, which allows users to find the presence of over 320 experimentally verified phosphorylation motifs in proteins of interest. Another new feature is a protein distributed annotation system—Human Proteinpedia (http://www.humanproteinpedia.org/)—through which laboratories can submit their data, which is mapped onto protein entries in HPRD. Over 75 laboratories involved in proteomics research have already participated in this effort by submitting data for over 15 000 human proteins. The submitted data includes mass spectrometry and protein microarray-derived data, among other data types. Finally, HPRD is also linked to a compendium of human signaling pathways developed by our group, NetPath (http://www.netpath.org/), which currently contains annotations for several cancer and immune signaling pathways. Since the last update, more than 5500 new protein sequences have been added, making HPRD a comprehensive resource for studying the human proteome

    Kavezno izlaganje lubina (Dicentrarchus labrax) u procjeni genotoksičnog utjecaja onečišćenja

    Get PDF
    Genotoxic effects are often the earliest signs of pollution-related environmental disturbance. In this study, we used the comet assay and micronucleus test to assess DNA damage in the erythrocytes of the European sea bass (Dicentrarchus labrax) exposed to environmental pollution in situ. Fish were collected from a fi sh farm in the Trogir Bay and their cages placed at an unpolluted reference site Šolta (Nečujam Bay) and a polluted site Vranjic (Kaštela Bay) for four weeks. A group of fi sh which remained at the fi sh farm Trogir Bay were used as the second control group. Fish exposed at the Vranjic site showed a signifi cantly higher erythrocyte DNA damage, measured by the comet assay, than either control group. Micronucleus induction showed a similar gradient of DNA damage, but did not reach statistical signifi cance. Our results show that cage exposure of a marine fi sh D. labrax can be useful in environmental biomonitoring and confi rm the comet assay as a suitable tool for detecting pollution-related genotoxicity.Genotoksični učinak često je jedan od najranijih pokazatelja štetnog djelovanja onečišćenja okoliša. U ovom radu procijenjeno je oštećenje DNA u eritrocitima lubina (Dicentrarchus labrax) izloženima okolišnom onečišćenju s pomoću komet-testa i mikronukleus-testa. Lubini su prikupljeni na ribogojilištu i kavezno izloženi u periodu od četiri tjedna na dvije postaje različitog stupnja onečišćenja na jadranskoj obali: na kontrolnoj postaji Šolta (zaljev Nečujam) i na onečišćenoj postaji Vranjic (Kaštelanski zaljev). Zasebna skupina lubina skupljena na ribogojilištu poslužila je kao druga kontrola. Rezultati komet-testa pokazali su statistički značajan porast oštećenja DNA na postaji Vranjic u usporedbi s obje kontrolne postaje. Rezultati mikronukleus-testa pokazali su sličan gradijent onečišćenja, iako nisu dosegli statističku značajnost. Ovi rezultati upućuju na primjenjivost kaveznog izlaganja lubina D. labrax u biomonitoringu vodenog okoliša te potvrđuju korisnost komet-testa kao prikladne metode za detekciju genotoksičnog utjecaja onečišćenja

    MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux

    No full text
    The flow and heat transfer over a stretching sheet with a magnetic field in an electrically conducting ambient fluid have been studied. The effects of the induced magnetic field and sources or sinks have been included in the analysis. Both non-isothermal wall and constant heat flux conditions have been considered. The governing equations have been solved numerically using a shooting method. It is observed that for the prescribed wall temperature the skin friction, induced magnetic field at the wall and heat transfer are enhanced due to the magnetic field, but in general, they reduce as the reciprocal of the magnetic Prandtl number increases. For constant heat flux case, the temperature at the wall reduces as the magnetic field increases, but it increases with the reciprocal of the magnetic Prandtl number. The heat transfer is strongly affected by the Prandtl number, wall temperature and sink. Whenm2.5 the unrealistic temperature distributions are encountered. The present analysis is more general than any previous investigation

    Salt marsh halophyte services to metal-metalloid remediation: assessment of the processes and underlying mechanisms

    No full text
    Salt marshes are widely distributed and most productive ecosystems in the temperate zones on the globe. These areas perform vital ecological functions and are populated mainly by halophytes—plants that are able to survive and reproduce in environments with exceptionally high salt concentrations. In salt marshes, in addition to tolerating high salt concentrations, salt marsh halophytes have to cope with damages caused by multiple anthropgenic pressures including metal and metalloid pollution. Extensive studies have been performed aiming at exploring naturally occurring endemic salt marsh halophytes with extraordinary potential for metals and metalloids remediation. However, a knowledge gap is perceptible on the basics of salt marsh halophyte adaptation/ tolerance to the joint action of damaging factors such as high concentration of salt and presence of metals–metalloids. In light of available literature, the current paper is critical in: (i) highlighting ecological significance of salt marsh halophytes and their use as bioindicators or biomonitors of metal–metalloid pollution; (ii) analyzing salt marsh halophyte significant contributions for metal- and metalloid-remediation processes; (iii) overviewing salt marsh halophytes–microbes interaction influence on metalphytoremediation processes; and (iv) cross-talking important physiological/ biochemical strategies adopted by salt marsh halophytes for salinity-, metal-, and metalloid-tolerance. Conclusively, the paper highlights important aspects so far less explored in the context of salt marsh halophyte services to metal–metalloid remediation and underlying mechanisms. The discussion will enable researchers and environmentalists to set further exhaustive studies aiming at efficient and sustainable management of rapidly mounting salt marshes metal–metalloid contamination issues

    Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.)

    No full text
    This in vitro study investigates the impact of silicacoated magnetite particles (Fe3O4@SiO2/SiDTC, hereafter called IONP; 2.5 mg L-1) and its interference with coexposure to persistent contaminant (mercury, Hg; 50 mu g L-1) during 0, 2, 4, 8, 16, 24, 48, and 72 h on European eel (Anguilla anguilla) brain and evaluates the significance of the glutathione (GSH) redox system in this context. The extent of damage (membrane lipid peroxidation, measured as thiobarbituric acid reactive substances, TBARS; protein oxidation, measured as reactive carbonyls, RCs) decreased with increasing period of exposure to IONP or IONP + Hg which was accompanied with differential responses of glutathione redox system major components (glutathione reductase, GR; glutathione peroxidase, GPX; total GSH, TGSH). The occurrence of antagonism between IONP and Hg impacts was evident at late hour (72 h), where significantly decreased TBARS and RC levels and GR and glutathione sulfotransferase (GST) activity imply the positive effect of IONP + Hg concomitant exposure against Hg-accrued negative impacts [vs. early (2 h) hour of exposure]. A period of exposuredependent IONP alone and IONP + Hg joint exposureaccrued impact was perceptible. Additionally, increased susceptibility of the GSH redox system to increased period of exposure to Hg was depicted, where insufficiency of elevated GR for the maintenance of TGSH required for membrane lipid and cellular protein protection was displayed. Overall, a finetuning among brain glutathione redox system components was revealed controlling IONP + Hg interactive impacts successfully
    corecore