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Genotoxic effects are often the earliest signs of pollution-related environmental disturbance. In this study, 
we used the comet assay and micronucleus test to assess DNA damage in the erythrocytes of the European 
sea bass (Dicentrarchus labrax) exposed to environmental pollution in situ. Fish were collected from a 
fi sh farm in the Trogir Bay and their cages placed at an unpolluted reference site Šolta (Nečujam Bay) 
and a polluted site Vranjic (Kaštela Bay) for four weeks. A group of fi sh which remained at the fi sh farm 
Trogir Bay were used as the second control group. Fish exposed at the Vranjic site showed a signifi cantly 
higher erythrocyte DNA damage, measured by the comet assay, than either control group. Micronucleus 
induction showed a similar gradient of DNA damage, but did not reach statistical signifi cance. Our results 
show that cage exposure of a marine fi sh D. labrax can be useful in environmental biomonitoring and 
confi rm the comet assay as a suitable tool for detecting pollution-related genotoxicity.
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Anthropogenic environmental pollution presents 
an increasing challenge to coastal waters, and bays 
are particularly endangered by contamination input 
due to limited self-renewal (1). The wider Kaštela Bay 
is a densely populated area with the heaviest load of 
genotoxic agents along the eastern Adriatic coast (2). 
Intensive industrial development and urbanisation 
have introduced various types and quantities of 
pollutants into the bay (3-5).

The assessment of DNA damage is of primary 
concern when evaluating the causal relationships 
between contaminant exposure and biological effects 
in aquatic organisms. Therefore the use of sensitive 
biomarkers in sentinel species has become a major 
issue in environmental genotoxicity monitoring (6, 
7).

Fish are often organisms of choice in environmental 
biomonitoring because of their role in biotic 
communities and because of their sensitivity to 
mutagens and environmental pollutants, even at 
low concentrations (6, 8, 9). Several studies have 
investigated the genotoxic effects of polluted aquatic 
environments on fish species, either through the 
sampling of native populations (6, 9-13) or by cage 
exposure in situ (14-16). When assessing the impact 
of pollution in aquatic environments using native 
fi sh populations, research may be compromised by 
migration of fi sh for feeding and breeding, availability 
of certain species at a particular site of interest, or 
diffi culty to obtain enough specimens for desired 
analyses. In situ cage exposure of sentinel species 
offers several advantages such as the knowledge of 
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the precise location and duration of exposure (17). 
Furthermore, it reduces inter-individual variability 
(life history, genetic background, and developmental 
stages)(18) and obviates the infl uence of adaptive 
mechanisms, more likely to develop in native 
pollution-stressed fi sh populations.

In comparison with studies that utilised the comet 
assay on freshwater species, a limited number of studies 
has been focused on marine fi sh. These studies have 
often implemented species that live close to sediments, 
where most contaminants tend to accumulate (19). 
Hatchery-reared turbot (Scophthalmus maximus) was 
experimentally exposed to the sediment collected from 
polycyclic aromatic hydrocarbons (PAH) and heavy 
metal polluted sites (20), while native populations 
of gray mullet (Mugil sp.), sea catfi sh (Netuma sp.), 
and marine fl atfi sh dab (Limanda limanda) were used 
in studies investigating the effects of coastal and 
estuarine water contamination (13, 21-23).

There have not been many studies using transplanted 
(caged) fi sh for genotoxicity assessment, and most of 
them involved freshwater species (14, 15, 24, 25). 
Studies using caged fish in marine environment 
include the research work assessing the infl uence of 
the Laranjo basin (Aveiro, Portugal) contamination on 
caged golden grey mullet (Liza aurata) by measuring 
erythrocyte nuclear abnormalities (16) and the study 
of genotoxic response in caged eel (Anguilla anguilla) 
after exposure to harbour waters by observing DNA 
integrity and nuclear abnormalities in erythrocytes 
(26).

European sea bass (Dicentrarchus labrax) is 
suitable for assessing pollutant-induced effects in 
marine environments, since it is sensitive enough to 
detect the effects of a wide range of pollutants at low 
doses and it is naturally widespread in the studied 
ecosystems (7). This species was implemented in 
many studies that investigated biotransformation and 
biochemical and genotoxic responses to benzo(a)pyrene 
[B(a)P], β-naphthofl avone, 4-nonylphenol, 17β-
estradiol, and resin acids (27-33), contaminated 
water samples (34-36), or environmental pollution in 
situ (7, 37). Caged sea bass has already been used to 
assess marine pollution in the Mediterranean Sea, and 
the effects were evaluated using biochemical markers 
(EROD, GST, and AChE) (38). Sea bass is one of 
the few marine fi sh species commercially available 
from aquaculture and therefore easy to obtain for 
cage exposure.

There are many different assays for detecting 
DNA damage, among which micronucleus test (MNT) 

and the comet assay (single cell gel electrophoresis 
assay) have proven their reliability and sensitivity in 
detecting pollution-related genotoxic effects in aquatic 
environments (13, 39, 40).

MNT is a relatively fast, simple, sensitive, and 
inexpensive procedure. Micronuclei (MN) are small 
cytoplasmic masses of chromatin resulting either 
from chromosome breaks during cell division or from 
chromosomes that are lagging in anaphase (41).

The comet assay is a sensitive technique for 
detecting DNA damage (single-strand and double-
strand breaks, alkali labile sites or DNA-DNA and 
DNA-protein cross-links) induced by alkylating 
agents, intercalating agents, or oxidative damage (42). 
It requires a small number of cells, detects genotoxic 
damage at the single cell level, and allows for an early 
response evaluation in a biota (19).

The aim of this study was to assess the applicability 
of cage exposure of sea bass (D. labrax) in 
biomonitoring marine environments and to evaluate 
the genotoxic potential of the polluted Kaštela Bay 
site (Vranjic) and the control Nečujam Bay site 
(Šolta) using the MNT and the comet assay on sea 
bass erythrocytes.

METHODS

Study areas

The Kaštela Bay (Figure 1) is a semi-enclosed bay 
in the Eastern Adriatic with the average depth of 23 
m, 61 km2 surface, and a total volume of 1.4 km3 (43). 
The area is one of the most densely populated and 
industrialised coastal areas along the eastern Adriatic. 
Industrial and urban wastewater outlets, located in 
the eastern part of the bay, discharge untreated or 
partly treated effl uents into the bay. The bay also 
receives agricultural and urban runoffs and untreated 
stormwater. This basin receives 32 million m3 of 
untreated municipal wastewater and 20 million m3 of 
partly treated industrial wastewater per year (44).

The Vranjic site in the Kaštela Bay is likely to 
be exposed to various sources of contamination. It is 
placed near the mouth of the Jadro River (8 m3 s-1) and 
receives effl uents from various industries (brewery, 
cement plant, etc.), the harbour, Split shipyard, 
Vranjic shipworks, domestic sewage, and agricultural 
discharge that enters the bay without any treatment 
(2, 39).
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The fi sh farm, situated on the western side of the 
Trogir Bay, was chosen as the fi rst reference site. The 
second reference site was the Nečujam Bay (on the 
island of Šolta, situated outside the Kaštela and Trogir 
Bays). This area is considered to have no known local 
sources of contamination.

Cage exposure

The cage experiment took place between September 
and October 2003. European sea bass (D. labrax) 
specimens were collected from the fi sh farm in the 
Trogir Bay and transplanted to the Nečujam Bay site 
and Vranjic, where they were kept in polyethylene 
cages (1.5 m x 1 m, mesh size 12 mm) for a month. 
One cage contained about fi fty fi sh. 

Blood sampling

Peripheral blood was collected from the caudal 
vein of each fi sh with heparinised syringes. Blood 
samples were kept on ice and immediately processed 
for genotoxicity testing (7 to 16 samples for the comet 
assay and 6 to 16 samples for MNT).

Unless specifi ed otherwise, chemicals and reagents 
used were purchased form Sigma Chemical Co., St. 
Louis, MO, USA.

The comet assay

The comet assay was performed according to 
the basic procedure of Singh et al. (45) with slight 
modifi cations. Five microlitres of blood diluted in PBS 
(1:200) were mixed with 95 μL of 0.5 % low melting 

point (LMP) agarose and placed on 1 % normal 
agarose-precoated microscope slides. After solidifying 
for 2.5 min at 0 °C, a third layer of 0.5 % LMP agarose 
was added and left to solidify. The cells were lysed 
in a freshly made lysing solution (2.5 mol L-1 NaCl, 
100 mmol L-1 EDTA, 10 mmol L-1 Tris-HCl, 10 % 
DMSO, 1 % Triton X-100, pH 10), for one hour at 
4 °C. After rinsing with redistilled water, the slides 
were placed on the horizontal gel box, covered with 
cold alkaline buffer (0.3 mol L-1 NaOH, 1 mmol L-1 
EDTA, pH>13), and left for 20 min. Electrophoresis 
was run in the same buffer at 25 V (0.83 V cm-1) and 
300 mA for 20 min at 4 °C. After electrophoresis, 
the slides were neutralised in a cold neutralisation 
buffer (0.4 mol L-1 Tris-HCl, pH 7.5), 2x5 min, fi xed 
in methanol:acetic acid (3:1) for 5 min, and stored in 
the dark at room temperature. Prior to examination 
with a Zeiss Axioplan epifl uorescence microscope, 
the slides were rehydrated and stained with 10 μg mL-1 
ethidium bromide. At least 50 cells were examined 
per slide (each slide corresponding to one animal), 
and the extent of DNA migration was determined as a 
percentage of the tail DNA, using the Komet 5 image 
analysis system by Kinetic Ltd. (UK).

The micronucleus test

Smears were prepared from 10 μL heparinised 
blood and left to dry. They were fi xed with 1 % 
glutaraldehyde in PBS for 5 min, stained with 
bisbenzimide 33258 (Hoechst) at the fi nal concentration 
of 1 μg mL-1 for 5 min, and then washed and mounted 
in glycerol-McIlvaine buffer (1:1). The slides were 
kept in the dark at 4 °C before scoring under the 
Zeiss Axioplan epifl uorescence microscope at 1000x 
magnification. 2000 cells were counted on each 
slide. MN were identifi ed according to the criteria 
described by Kirsch-Volders et al. (41, 46) as small 
round structures in the cytoplasm, smaller than 1/3 
of the nucleus diameter. Furthermore, the MN had to 
be in the same optical plane as the main nucleus, and 
its boundary had to be distinguishable from the main 
nucleus. Only intact cells with distinct nuclear and 
cellular membranes were scored.

Statistical analysis

DNA damage in each group is expressed with the 
mean ± SEM for both the comet assay and MNT. For 
statistical analysis we used the Mann-Whitney U-test. 
The level of signifi cance was P≤0.01.

Figure 1  Map showing the study areas and exposure sites: 1 
- Fish farm reference site; 2 - Nečujam Bay reference 
site; 3 - Vranjic site
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RESULTS

Comet assay data

The level of DNA damage in fi sh erythrocytes 
is presented as the percentage of migrated tail DNA 
(% tDNA). Fish from the Vranjic site showed a 
signifi cantly higher DNA damage than fi sh from either 
reference site (10.84 % vs. 7.06 % tDNA for the fi sh 
farm and 6.25 % tDNA for the Nečujam Bay site on 
Šolta; Figure 2). The frequency of cells exceeding 
50 % tDNA did not vary greatly, but was still the 
highest in fi sh from the Vranjic site (Table 1).

Table 1  Percentage of sea bass erythrocytes with more than 
50 % tDNA 

Location
Cells exceeding 
50 % tDNA / %

Fish farm 0.65
Nečujam Bay 0.35
Vranjic 1.06

This site has already been identified as the site 
with high genotoxic pressure on mussels (Mytilus 
galloprovincialis) measured by the comet assay, MNT 
(39), and Fast Micromethod® (2).

Figure 3  MN frequency in sea bass erythrocytes (mean+SEM) 
after four weeks of in situ cage exposure

Figure 2  The level of DNA damage measured by the comet assay 
(percentage of tail DNA, mean+SEM) in sea bass 
erythrocytes after four weeks of in situ cage exposure)
** - significantly increased compared to both 
reference sites; P≤0.01

Micronucleus test data

Fish from all three sites showed similar MN 
frequency (Figure 3). Fish at the Vranjic site had a 
small increase over other fi sh, but the difference was 
not statistically signifi cant.

DISCUSSION

Our comet assay has confi rmed that the Vranjic 
site, and therefore the Kaštela Bay, is polluted. 

The baseline level of DNA damage in erythrocytes 
of D. labrax at the reference sites, measured with the 
comet assay, was between 6.25 % and 7.06 % tDNA, 
while at the polluted Vranjic site it was 10.84 % tDNA, 
which is a statistically significant increase. It is 
sometimes diffi cult to compare the results of the comet 
assay between different authors due to differences in 
the applied protocols. For this reason we compared 
our results with studies using similar protocols. A 
similar baseline DNA damage was observed in fi sh 
species of unpolluted sites studied using similar 
protocols. Baseline DNA damage in carp (Cyprinus 
carpio) caged at the unpolluted site in the nature park 
“Kopački rit” was within 5 % to 7 % tDNA (47). 
In native three-spined sticklebacks (Gasterosteus 
aculeatus) captured in a clean environment, tDNA 
was 6.33 % (48).

Our comet assay showed 1.7-fold increase in DNA 
damage between the polluted Vranjic site and the clean 
Nečujam Bay site. These results are comparable with 
the fi ndings in three-spined sticklebacks (G. aculeatus) 
from a polluted site receiving effl uent of a large sewage 
treatment plant. Their DNA damage was 1 to 1.5 times 
higher than in fi sh from the unpolluted site (48). One 
to fi ve times higher rate of DNA strand breaks was 
measured in the erythrocytes of caged Sacramento 
sucker (Catostomus occidentalis) after one week of 
exposure in waters receiving agricultural chemical 
runoff (14). Caged chub (Leuciscus cephalus) liver 
cells showed a two fold increase in DNA damage 
after four weeks of exposure to contaminated river 
water (15).
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Comparable DNA damage between the reference 
sites indicates an absence of genotoxic effects caused 
by translocation or cage exposure-induced stress. A 
comet assay study on feral and caged chubs in rivers 
with different pollution (L. cephalus) reported very 
similar hepatocyte DNA damage (15).

In our study the MN frequency in sea bass 
erythrocytes varied between 0.83 ‰ and 1 ‰. Similar 
MN incidence in this species was observed in a study 
investigating genotoxic response of juvenile sea bass 
to resin acids. In a control group it was <0.86 ‰ (29). 
Two other studies investigated the effects of B(a)P 
(30) and of a soluble fraction of secondary treated 
industrial/urban effl uent (SF-STIUE) (36) on MN 
frequency in sea bass erythrocytes. In control groups 
the MN frequency varied between 1 ‰ and 2.5 ‰.

In organisms with many small chromosomes it is 
likely that MN formed after a clastogenic event will be 
very small in size, some of them not even visible under 
light microscopy (49). This may also be true for D. 
labrax whose karyotype consists of 48 subtelocentric 
and acrocentric chromosomes (50). Therefore, fi sh 
species with fewer but larger chromosomes are 
recommended for MNT, such as Christy’s lyretail 
(Aphyosemion christy) (2n=18), cowfi sh (Galaxias 
maculates) (2n=22), killifish (Nothobranchius 
rachowi) (2n=16), central mudminnow (Umbra 
limi) (2n=22) and eastern mudminnow (Umbra 
pygmaea) (2n=22). Several papers have reported 
a good correlation between MN frequency and 
pollution or chemical concentrations in fi sh species 
with a similar number of chromosomes, such as the 
three-spined stickleback (G. aculeatus) (2n=42) and 
loach (Misgurnus anguillicaudatus) (2n=50) (48, 
51, 52). Sea bass erythrocytic MN frequency seems 
to be sensitive and suitable enough for assessing 
the genotoxic potential of pollutant mixtures, and is 
therefore justifi ed for use in environmental studies 
(36).

Although both assays applied in our study 
demonstrated a similar level of DNA damage, 
the comet assay was more sensitive. Similar was 
observed in a study of the effects of anthropogenic 
contamination on caged carp (C. carpio) erythrocytes 
(47). The comet assay showed statistically signifi cant 
differences between grey mullets (Mugil sp.) and sea 
catfi sh (Netuma sp.) from polluted and clean sites 
while MN frequency was not signifi cantly different 
(13). The lower sensitivity of MNT for various 
feral fi sh species has also been described elsewhere 
(53). In contrast, butterfi sh (Pholis gunnellus) from 

contaminated areas in Firth of Forth (Scotland) 
showed higher MN frequency but no increase in 
DNA strand breaks measured by the comet assay (54). 
Similar was reported for three-spined sticklebacks (G. 
aculeatus) (48). Differences in the sensitivity of these 
two assays confi rm the need for using them together 
since they complement each other in different aspects 
of DNA damage. MNT detects more persistent DNA 
damage (double strand DNA breaks) and aneugenic 
effects that can not be repaired and last as long as the 
cell itself (47). On the other hand, the comet assay 
detects mostly repairable DNA lesions (alkali labile 
sites and single strand DNA breaks), indicating recent 
pollution.

A study using native and caged mussels (M. 
galloprovincialis) on several locations in the Kaštela 
and Trogir Bays at the same time as in this study 
showed a similar pattern of DNA damage caused 
by pollution (39). In comparison with the sea bass, 
measured DNA damage in mussels was 3.7 times 
higher. This suggest that mussels are more sensitive 
organisms in assessing genotoxicity of marine 
pollution. On the other hand, MN frequency in both 
studies did not show statistically signifi cant difference 
between polluted and unpolluted areas for either 
species. This could be attributed to the absence of 
aneugenic stressors at the polluted Vranjic site.

CONCLUSION

Our study confi rms the presence of genotoxic 
burden on organisms in the Kaštela Bay. The comet 
assay on caged sea bass erythrocytes appears to 
better distinguish the genotoxic effects of polluted 
environments than MNT. Nevertheless, it is advisable 
to implement both methods in genotoxicity studies, 
as they reveal different aspects of DNA damage and 
therefore complement each other. The results of 
this study have also confi rmed that cage exposure 
of European sea bass is a suitable method in marine 
genotoxicity monitoring and encourage the use of fi sh 
erythrocytes in environmental pollution assessment.
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Sažetak

KAVEZNO IZLAGANJE LUBINA (DICENTRARCHUS LABRAX) U PROCJENI GENOTOKSIČNOG 
UTJECAJA ONEČIŠĆENJA

Genotoksični učinak često je jedan od najranijih pokazatelja štetnog djelovanja onečišćenja okoliša. U ovom 
radu procijenjeno je oštećenje DNA u eritrocitima lubina (Dicentrarchus labrax) izloženima okolišnom 
onečišćenju s pomoću komet-testa i mikronukleus-testa. Lubini su prikupljeni na ribogojilištu i kavezno 
izloženi u periodu od četiri tjedna na dvije postaje različitog stupnja onečišćenja na jadranskoj obali: na 
kontrolnoj postaji Šolta (zaljev Nečujam) i na onečišćenoj postaji Vranjic (Kaštelanski zaljev). Zasebna 
skupina lubina skupljena na ribogojilištu poslužila je kao druga kontrola. Rezultati komet-testa pokazali su 
statistički značajan porast oštećenja DNA na postaji Vranjic u usporedbi s obje kontrolne postaje. Rezultati 
mikronukleus-testa pokazali su sličan gradijent onečišćenja, iako nisu dosegli statističku značajnost. Ovi 
rezultati upućuju na primjenjivost kaveznog izlaganja lubina D. labrax u biomonitoringu vodenog okoliša te 
potvrđuju korisnost komet-testa kao prikladne metode za detekciju genotoksičnog utjecaja onečišćenja.

KLJUČNE RIJEČI: biomonitoring morskog okoliša, ekogenotoksikologija, Jadransko more, komet-test, 
mikronukleus-test, ribe
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