409 research outputs found

    CONTRACTING OVER PERSISTENT INFORMATION

    Get PDF
    We consider a dynamic principal-agent problem, where the sole instrument the principal has to incentivize the agent is the disclosure of information. The principal aims at maximizing the (discounted) number of times the agent chooses the principal’s preferred action. We show that there exists an optimal policy, where the principal recommends its most preferred action and discloses information as a reward in the next period, until either this action becomes statically optimal for the agent or the agent perfectly learns the state

    Giant dispersion of critical currents in superconductor with fractal clusters of a normal phase

    Full text link
    The influence of fractal clusters of a normal phase on the dynamics of a magnetic flux trapped in a percolative superconductor is considered. The critical current distribution and the current-voltage characteristics of fractal superconducting structures in the resistive state are obtained for an arbitrary fractal dimension of the cluster boundaries. The range of fractal dimensions, where the dispersion of critical currents becomes infinite, is found. It is revealed that the fractality of clusters depresses of the electric field caused by the magnetic flux motion thus increasing the critical current value. It is expected that the maximum current-carrying capability of a superconductor can be achieved in the region of giant dispersion of critical currents.Comment: 7 pages with 3 figure

    Comparison of regeneration capacity and Agrobacterium-mediated cell transformation efficiency of different cultivars and rootstocks of Vitis spp. via organogenesis.

    Get PDF
    The success of in vitro plant regeneration and the competence of genetic transformation greatly depends on the genotype of the species of interest. In previous work, we developed a method for the efficient Agrobacterium-mediated genetic transformation via organogenesis of V. vinifera cultivar Thompson Seedless, by using meristematic bulk (MB) as starting tissue. In this study, we applied this method for the regeneration and transformation of MBs obtained from the Italian cultivar Ciliegiolo and two of the commonly used Vitis rootstocks, 110 Richter and Kober 5BB, in comparison with Thompson Seedless. The A. tumefaciens strain EHA105, harbouring pK7WG2 binary vector, was used for the transformation trials, which allowed selection through the enhanced-green fluorescent protein (eGFP) and the neomycin phosphotransferase (nptII) gene. Putative transformed tissues and/or shoots were identified by either a screening based on the eGFP expression alone or its use in combination with kanamycin in the medium. MBs obtained from Thompson Seedless showed the highest regeneration and transformation cell competence, which subsequently allowed the recovery of stably transformed plants. Ciliegiolo, 110 Richter, and Kober 5BB, produced actively growing transgenic calli showing eGFP fluorescence, more consistently on selective media, but had no regenerative competence

    The rotational broadening and the mass of the donor star of GRS 1915+105

    Full text link
    The binary parameters of the microquasar GRS 1915+105 have been determined by the detection of Doppler-shifted 12CO and 13CO lines in its K-band spectrum (Greiner et al., 2001, Nature, 414, 522). Here, we present further analysis of the same K-band VLT spectra and we derive a rotational broadening of the donor star of V sin i=26+-3 km/s from the 12CO/13CO lines. Assuming that the K-type star is tidally locked to the black hole and is filling its Roche-lobe surface, then the implied mass ratio is q = M_d/M_x = 0.058+-0.033. This result, combined with (P, K, i)=(33.5 d, 140 km/s, 66 deg) gives a more refined mass estimate for the black hole, Mx=14.0+−4.4M⊙M_x=14.0+-4.4 M_{\odot}, than previously estimated, using an inclination of i=66+-2 deg (Fender et al. 1999) as derived from the orientation of the radio jets and a more accurate distance. The mass for the early K-type giant star is Md=0.81±0.53M⊙M_d=0.81\pm0.53 M_{\odot}, consistent with a more evolved stripped-giant donor star in GRS 1915+105 than, for example, the donor star of the prototype black-hole X-ray transient, V404 Cyg which has the longest binary period after GRS 1915+105.Comment: 4 pages, 1 figure, A&A Lette

    Clustering of loose groups and galaxies from the Perseus--Pisces Survey

    Get PDF
    We investigate the clustering properties of loose groups in the Perseus--Pisces redshift Survey (PPS). Previous analyses based on CfA and SSRS surveys led to apparently contradictory results. We investigate the source of such discrepancies, finding satisfactory explanations for them. Furthermore, we find a definite signal of group clustering, whose amplitude AGA_G exceeds the amplitude AgA_g of galaxy clustering (AG=14.5−3.0+3.8A_G=14.5^{+3.8}_{-3.0}, Ag=7.42−0.19+0.20A_g=7.42^{+0.20}_{-0.19} for the most significant case; distances are measured in \hMpc). Groups are identified with the adaptive Friends--Of--Friends (FOF) algorithms HG (Huchra \& Geller 1982) and NW (Nolthenius \& White 1987), systematically varying all search parameters. Correlation strenght is especially sensitive to the sky--link DLD_L (increasing for stricter normalization D0D_0), and to the (depth \mlim of the) galaxy data. It is only moderately dependent on the galaxy luminosity function ϕ(L)\phi(L), while it is almost insensitive to the redshift--link VLV_L (both to the normalization V0V_0 and to the scaling recipes HG or NW).Comment: 28 pages (LaTeX aasms4 style) + 5 Postscript figures ; ApJ submitted on May 4th, 1996; group catalogs available upon request ([email protected]

    New Optical Insights into the Mass Discrepancy of Galaxy Clusters: The Cases of A1689 and A2218

    Full text link
    We analyze the internal structures of clusters A1689 and A2218 by applying a recent development of the method of wavelet analysis, which uses the complete information obtained from optical data, i.e. galaxy positions and redshifts. We find that both clusters show the presence of structures superimposed along the line of sight with different mean redshifts and smaller velocity dispersions than that of the system as a whole, suggesting that the clusters could be cases of the on-going merging of clumps. In the case of A2218 we find an acceptable agreement between our estimate of optical virial mass and X-ray and gravitational lensing masses. On the contrary, in the case of A1689 we find that our mass estimates are smaller than X-ray and gravitational lensing ones at both small and large radii. In any case, at variance with earlier claims, there is no evidence that X-ray mass estimates are underestimated.Comment: 8 pages, 2 eps figures, Use LaTeX2e, accepted by Astrophysical Journal, in press November 1997, Vol.49

    Observational Mass-to-Light Ratio of Galaxy Systems: from Poor Groups to Rich Clusters

    Get PDF
    We study the mass-to-light ratio of galaxy systems from poor groups to rich clusters, and present for the first time a large database for useful comparisons with theoretical predictions. We extend a previous work, where B_j band luminosities and optical virial masses were analyzed for a sample of 89 clusters. Here we also consider a sample of 52 more clusters, 36 poor clusters, 7 rich groups, and two catalogs, of about 500 groups each, recently identified in the Nearby Optical Galaxy sample by using two different algorithms. We obtain the blue luminosity and virial mass for all systems considered. We devote a large effort to establishing the homogeneity of the resulting values, as well as to considering comparable physical regions, i.e. those included within the virial radius. By analyzing a fiducial, combined sample of 294 systems we find that the mass increases faster than the luminosity: the linear fit gives M\propto L_B^{1.34 \pm 0.03}, with a tendency for a steeper increase in the low--mass range. In agreement with the previous work, our present results are superior owing to the much higher statistical significance and the wider dynamical range covered (about 10^{12}-10^{15} M_solar). We present a comparison between our results and the theoretical predictions on the relation between M/L_B and halo mass, obtained by combining cosmological numerical simulations and semianalytic modeling of galaxy formation.Comment: 25 pages, 12 eps figures, accepted for publication in Ap
    • 

    corecore