442 research outputs found

    Village Baseline Study: Site Analysis Report for Makueni – Wote, Kenya (KE0202)

    Get PDF
    The village baseline study of Kithoni village in the CCAFS benchmark site of Makueni, Kenya took place from June 11th – 14th, 2012. Focus group discussions were conducted separately for men and women. The village is in a marginal landscape and is food insecure. Frequent droughts and crop failures plague the area. The biggest constraint to agricultural production is the shortage of water. Land holdings have become increasingly smaller due to the increase in human population. The government has to frequently provide relief food during times of crisis. There are many organisations operating in the village, but there is a lack of concerted efforts between them, particularly those working in food security and natural resource management. Very few organisations are working on the food crisis situation in the area, although this is a frequently recurring issue. Networks of information for agricultural advice are based mainly on the radio and friends/neighbours. All the organisations mentioned as providing information are those that operate beyond the locality. There is potential to link these organisations with community groups and individuals especially to develop a feedback mechanism so that the flow of information is two-way. The FM stations can also be supplied with a wider range of information to disseminate. However, this must be in line with the community needs which should be established beforehand

    A heterochromatic histone methyltransferase lowers nucleosome occupancy at euchromatic promoters

    Get PDF
    H3K9me3 (histone H3 modified with tri-methylation at lysine 9) is a hallmark of transcriptional silencing and heterochromatin. However, its global effects on the genome, including euchromatin, are less well understood. Here we develop Formaldehyde-Assisted Identification of Regulatory Elements (FAIRE) for C. elegans to examine the chromatin configuration of mutants that lack virtually all H3K9me3, while leaving H3K9me1 and H3K9me2 intact. We find that nucleosomes are mildly disrupted, and levels of H3K9me2 and H3K27me3 rise in mutant embryos. In addition to these expected changes, the most dramatic change occurs in euchromatin: many regions encompassing transcription start sites (TSSs) gain an average of two nucleosomes in mutants. The affected regions normally lack H3K9me3, revealing a locus non-autonomous role for H3K9me3. Affected TSSs are associated with genes that are active in epithelia and muscles, and implicated in development, locomotion, morphogenesis and transcription. Mutant embryos develop normally under ideal laboratory conditions but die when challenged, with defects in morphogenesis and development. Our findings reveal that H3K9me3 protects transcription start sites within euchromatin from nucleosome deposition. These results may be relevant to mammals, where diseases that disrupt the nuclear lamina and heterochromatin can alter epithelial and muscle gene expression

    Climate change mitigation beyond agriculture: A review of food system opportunities and implications

    Get PDF
    A large body of research has explored opportunities to mitigate climate change in agricultural systems; however, less research has explored opportunities across the food system. Here we expand the existing research with a review of potential mitigation opportunities across the entire food system, including in pre-production, production, processing, transport, consumption and loss and waste. We detail and synthesize recent research on the topic, and explore the applicability of different climate mitigation strategies in varying country contexts with different economic and agricultural systems. Further, we highlight some potential adaptation co-benefits of food system mitigation strategies and explore the potential implications of such strategies on food systems as a whole. We suggest that a food systems research approach is greatly needed to capture such potential synergies, and highlight key areas of additional research including a greater focus on low- and middle-income countries in particular. We conclude by discussing the policy and finance opportunities needed to advance mitigation strategies in food systems

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    Carbonates from the ancient world's longest aqueduct:A testament of Byzantine water management

    Get PDF
    The fourth‐ and fifth‐century aqueduct system of Constantinople is, at 426 km, the longest water supply line of the ancient world. Carbonate deposits in the aqueduct system provide an archive of both archaeological developments and palaeo‐environmental conditions during the depositional period. The 246‐km‐long aqueduct line from the fourth century used springs from a small aquifer, whereas a 180‐km‐long fifth‐century extension to the west tapped a larger aquifer. Although historical records testify at least 700 years of aqueduct activity, carbonate deposits in the aqueduct system display less than 27 years of operation. This implies that the entire system must have been cleaned of carbonate, presumably during regular campaigns. A 50‐km‐long double‐aqueduct section in the central part of the system may have been a costly but practical solution to allow repairs and cleaning of the aqueducts of carbonate to ascertain a continuous water supply to the city. The fifth‐century channel was commonly contaminated with clay, caused by the nature of the aqueduct system and possible local damage to the channel. This clay‐rich water could have been one of the reasons for the construction of large reservoirs in Constantinople. imageLeverhulme Trust http://dx.doi.org/10.13039/501100000275Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/50110000165

    Research and Innovation Supporting the Farm to Fork Strategy of the European Commission

    Get PDF
    The EU Think Tank (as part of the FIT4FOOD2030 Coordination andSupport Action) strongly supports the development of the Farm toFork Strategy as a key component of the European Green Deal,recognising the need to transform the food system as a whole

    Probing and manipulating embryogenesis via nanoscale thermometry and temperature control

    Full text link
    Understanding the coordination of cell division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular-scale are challenging due to the limited availability of biocompatible temperature sensors as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in-vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two cell stage. Our data suggest that the cell cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell division timings as a consequence of local perturbations.Comment: 6+6 pages, 4+9 figure

    Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments

    Full text link
    We attempt to provide physical interpretations of light-induced desorption phenomena that have recently been observed for alkali atoms on glass surfaces of alkali vapor cells used in atomic physics experiments. We find that the observed desorption phenomena are closely related to recent studies in surface science, and can probably be understood in the context of these results. If classified in terms of the photon-energy dependence, the coverage and the bonding state of the alkali adsorbates, the phenomena fall into two categories: It appears very likely that the neutralization of isolated ionic adsorbates by photo-excited electron transfer from the substrate is the origin of the desorption induced by ultraviolet light in ultrahigh vacuum cells. The desorption observed in low temperature cells, on the other hand, which is resonantly dependent on photon energy in the visible light range, is quite similar to light-induced desorption stimulated by localized electronic excitation on metallic aggregates. More detailed studies of light-induced desorption events from surfaces well characterized with respect to alkali coverage-dependent ionicity and aggregate morphology appear highly desirable for the development of more efficient alkali atom sources suitable to improve a variety of atomic physics experiments.Comment: 6 pages, 1 figure; minor corrections made, published in e-Journal of Surface Science and Nanotechnology at http://www.jstage.jst.go.jp/article/ejssnt/4/0/4_63/_articl
    • 

    corecore