368 research outputs found

    IUE observations of the 1987 superoutburst of the dwarf nova Z Cha

    Get PDF
    Low resolution IUE observations of the dwarf nova Z Cha during superoutburst are presented. These cover most of the development of the outburst and have sufficient time resolution to probe continuum and line behavior on orbital phase. The observed modulation on this phase is very similar to that observed in the related object OY Car. The results imply the presence of a cool spot on the edge of the edge of the accretion disk, which periodically occults the brighter inner disk. Details of the line behavior suggest that the line originated in an extended wind-emitting region. In contrast to archive spectra obtained in normal outburst, the continuum is fainter and redder, indicating that the entire superoutburst disk may be geometrically thicker than during a normal outburst

    Dynamical Masses for the Large Magellanic Cloud Massive Binary System [L72] LH 54-425

    Full text link
    We present results from an optical spectroscopic investigation of the massive binary system [L72] LH~54-425 in the LH 54 OB association in the Large Magellanic Cloud. We revise the ephemeris of [L72] LH 54-425 and find an orbital period of 2.247409 +/- 0.000010 days. We find spectral types of O3 V for the primary and O5 V for the secondary. We made a combined solution of the radial velocities and previously published V-band photometry to determine the inclination for two system configurations, i = 52 degrees for the configuration of the secondary star being more tidally distorted and i = 55 degrees for the primary as the more tidally distorted star. We argue that the latter case is more probable, and this solution yields masses and radii of M_1 = 47 +/- 2 M_Sun and R_1 = 11.4 +/- 0.1 R_Sun for the primary, and M_2 = 28 +/- 1 M_Sun and R_2 = 8.1 +/- 0.1 R_Sun for the secondary. Our analysis places LH 54-425 amongst the most massive stars known. Based on the position of the two stars plotted on a theoretical HR diagram, we find the age of the system to be about 1.5 Myr.Comment: 21 pages, 6 figures. Accepted in ApJ. To appear vol. 683, Aug. 10t

    Distribution and Kinematics of O VI in the Galactic Halo

    Full text link
    FUSE spectra of 100 extragalactic objects are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the approximate velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of thick disk O VI, implying the existence of substantial amounts of hot gas with T ~ 3x10^5 K in the Milky Way halo. Large irregularities in the distribution of the absorbing gas are found to be similar over angular scales extending from less than one to 180 degrees, indicating a considerable amount of small and large scale structure in the gas. The overall distribution of Galactic O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with a scale height of 2.3 kpc, and a 0.25 dex excess of O VI in the northern Galactic polar region. The O VI absorption has a Doppler parameter b = 30 to 99 km/s, with an average value of 60 km/s . Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high latitude objects range from -46 to 82 km/s, with a sample average of 0 km/s and a standard deviation of 21 km/s. O VI associated with the thick disk moves both toward and away from the plane with roughly equal frequency. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. (abbreviated)Comment: 70 pages, single-spaced, PDF format. Bound copies of this manuscript and two accompanying articles are available upon request. Submitted to ApJ

    What is the Total Deuterium Abundance in the Local Galactic Disk?

    Get PDF
    Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, together with spectra from the Copernicus and IMAPS instruments, reveal an unexplained very wide range in the observed deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk beyond the Local Bubble. We argue that spatial variations in the depletion of deuterium onto dust grains can explain these local variations in the observed gas-phase D/H ratios. We present a variable deuterium depletion model that naturally explains the constant measured values of D/H inside the Local Bubble, the wide range of gas-phase D/H ratios observed in the intermediate regime (log N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger hydrogen column densities. We consider empirical tests of the deuterium depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions of the refractory metals iron and silicon, and (ii) correlation with the molecular hydrogen rotational temperature. Both of these tests are consistent with deuterium depletion from the gas phase in cold, not recently shocked, regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked or otherwise heated recently. We argue that the most representative value for the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4 (1 sigma) parts per million (ppm). This ratio constrains Galactic chemical evolution models to have a very small deuterium astration factor, the ratio of primordial to total (D/H) ratio in the local region of the Galactic disk, which we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma) depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure

    The FUSE survey of OVI absorption in and near the Galaxy

    Get PDF
    We present FUSE observations of OVI absorption in a sample of 100 extragalactic targets and 2 distant halo stars. We describe the details of the calibration, alignment in velocity, continuum fitting, and manner in which contaminants were removed (Galactic H2, absorption intrinsic to the background target and intergalactic Ly-beta lines). We searched for OVI absorption in the velocity range -1200 to 1200 km/s. With a few exceptions, we only find OVI between -400 and 400 km/s; the exceptions may be intergalactic OVI. We discuss the separation of the observed OVI absorption into components associated with the Galactic halo and components at high-velocity, which are probably located in the neighborhood of the Galaxy. We describe the measurements of equivalent width and column density, and we analyze the different contributions to the errors. We conclude that low-velocity Galactic OVI absorption occurs along all sightlines - the few non-detections only occur in noisy spectra. We further show that high-velocity OVI is very common, having equivalent width >65 mAA in 50% of the sightlines and >30 mAA in 70% of the high-quality sightlines. The high-velocity OVI absorption has velocities relative to the LSR of +/-(100--330) km/s; there is no correlation between velocity and absorption strength. We present 50 km/s wide OVI channel maps. These show evidence for the imprint of Galactic rotation. They also highlight two known HI high-velocity clouds (complex~C and the Magellanic Stream). The channel maps further show that OVI at velocities <-200 km/s occurs along all sightlines in the region l=20-150, b200 km/s occurs along all sightlines in the region l=180-300, b>20 (abbreviated).Comment: 85 pages, 127 figures, 13 color figures, 3 tables, AASTeX preprint format. All figures are in PNG format due to space concerns. Bound copies of manuscript and two accompanying articles are available upon request. submitted to ApJ

    OVI Absorption in the Milky Way Disk, and Future Prospects for Studying Absorption at the Galaxy-IGM Interface

    Full text link
    We present a brief summary of results from our FUSE program designed to study OVI absorption in the disk of the Milky Way. As a full analysis of our data has now been published, we focus on the improvements that FUSE afforded us compared to Copernicus data published thirty years ago. We discuss FUSE's limitations in studying OVI absorption from nearby galaxies using background QSOs, but present FUSE spectra of two probes which indicate the absence of OVI (but the presence of Lyman-beta) absorption 8 and 63 kpc from a foreground galaxy. Finally, we discuss the need for a more sensitive UV spectrograph to map out the physical conditions of baryons around galaxies.Comment: Invited review to appear in the proceedings of "Future Directions in Ultraviolet Spectroscopy" meeting, held Oct 20-22, 2008, Annapolis, MD. To appear as an AIP Conference Proceedin

    Carbon Monoxide in the Cold Debris of Supernova 1987A

    Get PDF
    We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J=1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J=13-12, collectively measured from the Atacama Large Millimeter Array (ALMA), the Atacama Pathfinder EXperiment (APEX), and the Herschel Spectral and Photometric Imaging REceiver (SPIRE). Simple models show the lines are emitted from at least 0.01 solar masses of CO at a temperature > 14 K, confined within at most 35% of a spherical volume expanding at ~ 2000 km/s. Moreover, we locate the emission within 1'' of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations.Comment: Accepted to the Astrophysical Journal Letters, 6 pages, 3 figure
    corecore