30 research outputs found
Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation
The role of orbital differentiation on the emergence of superconductivity in
the Fe-based superconductors remains an open question to the scientific
community. In this investigation, we employ a suitable microscopic spin probe
technique, namely Electron Spin Resonance (ESR), to investigate this issue on
selected chemically substituted BaFeAs single crystals. As the
spin-density wave (SDW) phase is suppressed, we observe a clear increase of the
Fe 3 bands anisotropy along with their localization at the FeAs plane. Such
an increase of the planar orbital content interestingly occurs independently on
the chemical substitution responsible for suppressing the SDW phase. As a
consequence, the magnetic fluctuations combined with the resultant particular
symmetry of the Fe 3 bands are propitious ingredients to the emergence of
superconductivity in this class of materials.Comment: 6 pages, 5 figure
Possible unconventional superconductivity in substituted BaFeAs revealed by magnetic pair-breaking studies
The possible existence of a sign-changing gap symmetry in
BaFeAs-derived superconductors (SC) has been an exciting topic of
research in the last few years. To further investigate this subject we combine
Electron Spin Resonance (ESR) and pressure-dependent transport measurements to
investigate magnetic pair-breaking effects on BaFeAs (
Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence
of localized magnetic moments, is observed only for Cu and Mn compounds,
which display very low SC transition temperature () and no SC,
respectively. From the ESR analysis assuming the absence of bottleneck effects,
the microscopic parameters are extracted to show that this reduction of
cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a
sign-preserving gap function. Our results reveal an unconventional spin- and
pressure-dependent pair-breaking effect and impose strong constraints on the
pairing symmetry of these materials
Distinct high-T transitions in underdoped BaKFeAs
In contrast to the simultaneous structural and magnetic first order phase
transition previously reported, our detailed investigation on an
underdoped BaKFeAs single crystal unambiguously
revealed that the transitions are not concomitant. The tetragonal (:
I4/mmm) - orthorhombic (: Fmmm) structural transition occurs at
110 K, followed by an adjacent antiferromagnetic (AFM) transition
at 102 K. Hysteresis and coexistence of the and
phases over a finite temperature range observed in our NMR
experiments confirm the first order character of the structural transition and
provide evidence that both and are strongly correlated. Our
data also show that superconductivity (SC) develops in the phase
below = 20 K and coexists with long range AFM. This new observation,
, firmly establishes another similarity between the hole-doped
BaFeAs via K substitution and the electron-doped iron-arsenide
superconductors.Comment: 4 pages, 3 figure
Pressure effects on magnetic pair-breaking in Mn- and Eu-substituted BaFe2As2
FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPWe report a combined study of hydrostatic pressure (P <= 25 kbar) and chemical substitution on the magnetic pair-breaking effect in Eu- and Mn-substituted BaFe2As2 single crystals. At ambient pressure, both substitutions suppress the superconducting (SC) transition temperature (T-c) of BaFe2-xCoxAs2 samples slightly under the optimally doped region, indicating the presence of a pair-breaking effect. At low pressures, an increase of T-c is observed for all studied compounds followed by an expected decrease at higher pressures. However, in the Eu dilute system, T-c further increases at higher pressure along with a narrowing of the SC transition, suggesting that a pair-breaking mechanism reminiscent of the Eu Kondo single impurity regime is being suppressed by pressure. Furthermore, Electron Spin Resonance (ESR) measurements indicate the presence of Mn2+ and Eu2+ local moments and the microscopic parameters extracted from the ESR analysis reveal that the Abrikosov-Gor'kov expression for magnetic pair-breaking in a conventional sign-preserving superconducting state cannot describe the observed reduction of T-c.1151714FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPSem informaçãoSem informaçãoSem informaçãoAnnual Conference on Magnetism and Magnetic Materials4 a 8 de Novembro de 2013Denver, COThis work was supported by FAPESP-SP, AFOSR MURI, CNPq, and FINEP-Brazil
Pressure and chemical substitution effects in the local atomic structure of BaFe2As2
The effects of K and Co substitutions and quasi-hydrostatic applied pressure
(P<9 GPa) in the local atomic structure of BaFe2As2, Ba(Fe{0.937}Co{0.063})2As2
and Ba{0.85}K{0.15}Fe2As2 superconductors were investigated by extended x-ray
absorption fine structure (EXAFS) measurements in the As K absorption edge. The
As-Fe bond length is found to be slightly reduced (<~ 0.01 Angstroms) by both
Co and K substitutions, without any observable increment in the corresponding
Debye Waller factor. Also, this bond is shown to be compressible (k =
3.3(3)x10^{-3} GPa^{-1}). The observed contractions of As-Fe bond under
pressure and chemical substitutions are likely related with a reduction of the
local Fe magnetic moments, and should be an important tuning parameter in the
phase diagrams of the Fe-based superconductors.Comment: 7 pages, 6 figure
Electron spin resonance of GD3+ in three dimensional topological insulator BI2SE3
Bi2Se3 has been claimed to be a three dimensional topological insulator (TI) with topologically protected metallic surface states with exotic properties. We have performed electron spin resonance (ESR) measurements on Gd3+ doped (x approximate to 0.01) Bi2Se3 single crystal grown from stoichiometric melt. For the studied crystals, our preliminary results revealed a partly resolved Gd3+ fine structure spectrum with Dysonian (metallic character) lines. At room temperature, the central line has a g approximate to 1.98, a linewidth Delta H approximate to 95 G and the spectra have a overall splitting of roughly 1300 Oe. As the temperature is decreased, the Gd3+ ESR Delta H of the central line presents a very small Korringa-like behavior b = Delta H/Delta T approximate to 0.013 Oe/K and nearly T-independent g-value. However, for T less than or similar to 40 K, Delta H shows a stronger narrowing effect evolving to Korringa-like behavior (b approximate to 0.15 Oe/K) for T less than or similar to 30 K. Concomitantly with the change in Delta H behavior, the Gd3+ central line g value starts to decrease reaching a value of 1.976 at T less than or similar to 4.2 K. The ESR results are discussed in terms of possible effects of protected topological surface states enlightened by complementary data from macroscopic measurements592International Conference on Strongly Correlated Electron Systems (SCES)2014-07FrançaUniv Grenoble, Grenobl
Co-substitution effects on the Fe-valence in the BaFe2As2 superconducting compound: A study of hard x-ray absorption spectroscopy
The Fe K X-ray absorption near edge structure (XANES) of BaFe2-xCoxAs2
superconductors was investigated. No appreciable alteration in shape or energy
position of this edge was observed with Co substitution. This result provides
experimental support to previous ab initio calculations in which the extra Co
electron is concentrated at the substitute site and do not change the
electronic occupation of the Fe ions. Superconductivity may emerge due to
bonding modifications induced by the substitute atom that weakens the
spin-density-wave ground state by reducing the Fe local moments and/or
increasing the elastic energy penalty of the accompanying orthorhombic
distortion.Comment: 4+ pages, 4 figures. Published in Phys. Rev. Let
Physical properties and magnetic structure of the intermetallic CeCuBi2 compound
In this work we combine magnetization, pressure dependent electrical resistivity, heat capacity, Cu63 nuclear magnetic resonance (NMR), and x-ray resonant magnetic scattering experiments to investigate the physical properties of the intermetallic CeCuBi2 compound. Our single crystals show an antiferromagnetic ordering at TN≃16 K and the magnetic properties indicate that this compound is an Ising antiferromagnet. In particular, the low temperature magnetization data revealed a spin-flop transition at T=5 K when magnetic fields of about 5.5 T are applied along the c axis. Moreover, the x-ray magnetic diffraction data below TN revealed a commensurate antiferromagnetic structure with propagation wave vector (0012) with the Ce3+ moments oriented along the c axis. Furthermore, our heat capacity, pressure dependent resistivity, and temperature dependent Cu63 NMR data suggest that CeCuBi2 exhibits a weak heavy fermion behavior with strongly localized Ce3+ 4f electrons. We thus discuss a scenario in which both the anisotropic magnetic interactions between the Ce3+ ions and the tetragonal crystalline electric field effects are taking into account in CeCuBi2.Fil: Adriano, C.. Universidade Estadual de Campinas; BrasilFil: Rosa, P.F.S.. Universidade Estadual de Campinas; Brasil. University of California at Irvine; Estados UnidosFil: Jesus, Camilo B. R.. Universidade Estadual de Campinas; BrasilFil: Mardegan, J. R. L.. Universidade Estadual de Campinas; BrasilFil: Garitezi, T. M.. Universidade Estadual de Campinas; BrasilFil: Grant, Taran. California State University; Estados UnidosFil: Fisk, Z.. California State University; Estados UnidosFil: Garcia, Daniel Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Reyes, A. P.. National High Magnetic Field Laboratory; Estados UnidosFil: Kuhns, P. L.. National High Magnetic Field Laboratory; Estados UnidosFil: Urbano, R. R.. Universidade Estadual de Campinas; BrasilFil: Giles, C.. Universidade Estadual de Campinas; BrasilFil: Pagliuso, P. G.. Universidade Estadual de Campinas; Brasi