25,672 research outputs found
Magnetization reversal through synchronization with a microwave
Based on the Landau-Lifshitz-Gilbert equation, it can be shown that a
circularly-polarized microwave can reverse the magnetization of a Stoner
particle through synchronization. In comparison with magnetization reversal
induced by a static magnetic field, it can be shown that when a proper
microwave frequency is used the minimal switching field is much smaller than
that of precessional magnetization reversal. A microwave needs only to overcome
the energy dissipation of a Stoner particle in order to reverse magnetization
unlike the conventional method with a static magnetic field where the switching
field must be of the order of magnetic anisotropy.Comment: 4 pages, 5 figure
Zero-field magnetization reversal of two-body Stoner particles with dipolar interaction
Nanomagnetism has recently attracted explosive attention, in particular,
because of the enormous potential applications in information industry, e.g.
new harddisk technology, race-track memory[1], and logic devices[2]. Recent
technological advances[3] allow for the fabrication of single-domain magnetic
nanoparticles (Stoner particles), whose magnetization dynamics have been
extensively studied, both experimentally and theoretically, involving magnetic
fields[4-9] and/or by spin-polarized currents[10-20]. From an industrial point
of view, important issues include lowering the critical switching field ,
and achieving short reversal times. Here we predict a new technological
perspective: can be dramatically lowered (including ) by
appropriately engineering the dipole-dipole interaction (DDI) in a system of
two synchronized Stoner particles. Here, in a modified Stoner-Wohlfarth (SW)
limit, both of the above goals can be achieved. The experimental feasibility of
realizing our proposal is illustrated on the example of cobalt nanoparticles.Comment: 5 pages, 4 figure
Non-Volatile Magnonic Logic Circuits Engineering
We propose a concept of magnetic logic circuits engineering, which takes an
advantage of magnetization as a computational state variable and exploits spin
waves for information transmission. The circuits consist of magneto-electric
cells connected via spin wave buses. We present the result of numerical
modeling showing the magneto-electric cell switching as a function of the
amplitude as well as the phase of the spin wave. The phase-dependent switching
makes it possible to engineer logic gates by exploiting spin wave buses as
passive logic elements providing a certain phase-shift to the propagating spin
waves. We present a library of logic gates consisting of magneto-electric cells
and spin wave buses providing 0 or p phase shifts. The utilization of phases in
addition to amplitudes is a powerful tool which let us construct logic circuits
with a fewer number of elements than required for CMOS technology. As an
example, we present the design of the magnonic Full Adder Circuit comprising
only 5 magneto-electric cells. The proposed concept may provide a route to more
functional wave-based logic circuitry with capabilities far beyond the limits
of the traditional transistor-based approach
Hysteresis loops of magnetic thin films with perpendicular anisotropy
We model the magnetization of quasi two-dimensional systems with easy
perpendicular (z-)axis anisotropy upon change of external magnetic field along
z. The model is derived from the Landau-Lifshitz-Gilbert equation for
magnetization evolution, written in closed form in terms of the z component of
the magnetization only. The model includes--in addition to the external
field--magnetic exchange, dipolar interactions and structural disorder. The
phase diagram in the disorder/interaction strength plane is presented, and the
different qualitative regimes are analyzed. The results compare very well with
observed experimental hysteresis loops and spatial magnetization patterns, as
for instance for the case of Co-Pt multilayers.Comment: 8 pages, 8 figure
Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane
A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions
Control-system techniques for improved departure/spin resistance for fighter aircraft
Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability
A corrosion control manual for rail rapid transit
In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided
Management of Casualty Birds of Prey
Increasingly, practitioners are presented with injured raptors, either found as wild birds or kept as trained falcons. Orthopedic injuries are the most common result of trauma to birds of prey. While many of the principles of mammalian medicine and surgery can be applied to avian species, raptors present special problems of management, restraint and handling, diagnosis, anesthesia, fracture healing and repair, and rehabilitation
Detection of spin reversal and nutations through current measurements
The dynamics of a single spin embedded in a the tunnel junction between
ferromagnetic contacts is strongly affected by the exchange coupling to the
tunneling electrons. Moment reversal of the local spin induced by the bias
voltage across the junction is shown to have a measurable effect on the
tunneling current. Furthermore, the frequency of a harmonic bias voltage is
picked up by the local spin dynamics and transferred back to the current
generating a double frequency component.Comment: 5 pages, 5 figures; published version (with minor corrections
Solving the electrical control of magnetic coercive field paradox
The ability to tune magnetic properties of solids via electric voltages instead of external magnetic fields is a physics curiosity of great scientific and technological importance. Today, there is strong published experimental evidence of electrical control of magnetic coercive fields in composite multiferroic solids. Unfortunately, the literature indicates highly contradictory results. In some studies, an applied voltage increases the magnetic coercive field and in other studies the applied voltage decreases the coercive field of composite multiferroics. Here, we provide an elegant explanation to this paradox and we demonstrate why all reported results are in fact correct. It is shown that for a given polarity of the applied voltage, the magnetic coercive field depends on the sign of two tensor components of the multiferroic solid: magnetostrictive and piezoelectric coefficient. For a negative applied voltage, the magnetic coercive field decreases when the two material parameters have the same sign and increases when they have opposite signs, respectively. The effect of the material parameters is reversed when the same multiferroic solid is subjected to a positive applied voltage
- …