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We investigate magnetization reversal in a system of two Stoner particles with uniaxial

anisotropies both subject to a static and antiparallel magnetic field, and taking into account their

mutual dipolar interaction. We identify an interesting regime of stable synchronized magnetic

dynamics where the two particles are implementing a single information bit. Here a modified

Stoner-Wohlfarth limit occurs which results in a dramatically lower critical switching field Hc

(including Hc ¼ 0) and also a substantially shorter reversal time. Our analytical results are verified

by numerical simulations and offer new technological perspectives regarding devices for

information storage and/or fast magnetic response. VC 2011 American Institute of Physics.

[doi:10.1063/1.3581106]

I. INTRODUCTION

Magnetization reversal in magnetic nanostructures has

recently attracted explosive attention due to the fundamental

interest of the traditional magnetism and the newly emerging

spintronics community, but also, and in particular, because

of the enormous potential applications in information indus-

try, such as hard disk technology, magnetic memory, and

logic devices.1,2

Recent technological advances3–6 allow for the fabrica-

tion of smaller and smaller magnetic nanoparticles (often

referred to as Stoner particles), in which all the atomic

moments can rotate coherently under low thermal excitation

due to the strong exchange interaction between them. This

single-domain type magnetization dynamics under static or

pulsing magnetic fields has been extensively studied, both

theoretically and experimentally,7–17 showing to be in good

agreement. Current induced magnetization reversal phenom-

enon has also attracted much interest where a spin-polarized

current flowing through magnetic multilayers or spin-valves

can directly manipulate the magnetization,18–21 which prom-

ises broad applications in future. From an industrial point of

view, important issues include lowering the critical switch-

ing field (or current), and achieving shorter reversal times.

In a Stoner particle with uniaxial anisotropy, the mag-

netization reversal means that the system changes from one

valley to another across the barrier in between on the system

energy surface. The critical switching field Hc can be defined

as the minimum external field to complete such a reversal

path. The magnitude of Hc was first studied by Stoner and

Wohlfarth7 and they predicted that Hc equals the field just

capable of eliminating the energy barrier, which is now

called the well-known Stoner-Wohlfarth (SW) limit. Later

numerical simulations and experiments8–11 confirmed the

correctness of the SW limit in the ringing-motion mode

where magnetic field is parallel to the particle easy axis

(EA), but also showed that Hc can be lower than the SW

limit in the precessional-reversal mode where field is noncol-

linear (perpendicular) to EA. The physical reason of the

lower Hc was well explained by that the system may run

over the energy barrier by touching the saddle point, imply-

ing the barrier exists still at corresponding lower field.16 Hc

can also be lowered substantially by applying a time-dependent

field or microwave radiation.15–17 However, producing an

optimized field pulse pattern is still a big challenge to current

experimental techniques.

Moreover, since nanoparticles are fabricated in array

patterns,3–6 the dipole-dipole interaction (DDI) between

them possesses an important role and will affect the mag-

netic switching behaviors. A system of two Stoner particles

could be the simplest system to investigate the DDI effect. In

fact a quite number of studies have already put on this sub-

ject.22–28 Bertram et al. firstly predicted that there may coex-

ist coherent rotation and fanning modes in two magnetic

dipoles system.22 Later Chen et al. have obtained analytical

forms of energy barriers under a static consideration of the

energy surface variation. The dipolar interaction can also

assist the switching of one particle and influence its hystere-

sis loop in the two-body system, which was numerically

showed in Ref. 26.

In this paper, we shall go further the previous studies

and predict a new technological perspective in the two-body

system both analytically and numerically: the critical switch-

ing field Hc on both particles can be dramatically lowered

(even including Hc ¼ 0, neglecting environmental fluctua-

tions) by appropriately engineering the magnetic DDI (i.e.,

the distance) between the two Stoner particles. We identify a

stable regime of synchronized magnetization dynamics in

the two-body system, where it can be regarded, in the sense

of information technology, as a single bit. We analytically

obtain a modified SW limit for two typical geometrical con-

figurations of the two dipoles. Moreover, DDI also contrib-

utes to substantially shorten the reversal time around the

zero-field regime, as compared to the single particle case

(without DDI). We illustrate the experimental feasibility of
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realizing the zero-field scheme on the example of cobalt

nanoparticles. The paper is organized as follows: Sec. II

describes the model and main dynamical equations, and Sec.

III includes the main analytical and numerical results and a

discussion. We close with conclusions.

II. MODEL DESCRIPTION

The magnetization dynamics of two Stoner particles sys-

tem being subject to DDI and an external magnetic field is gov-

erned by the Landau-Lifshitz-Gilbert (LLG) equation,16,29,30

_~mi ¼ �~mi � ~ht
i þ a~mi � _~mi: (1)

Here ~mi ¼ ~Mi=Ms is the normalized magnetization vector of

the ith particle, ði ¼ 1; 2Þ. Ms ¼ j~Mij is the saturation mag-

netization of either particle, and a is the Gilbert damping

coefficient. For simplicity, we are assuming the two particles

to be completely identical in shape, volume, a, and Ms. The

unit of time is set to be ðjcjMsÞ�1
, where c is the gyromag-

netic ratio, and the total effective field ~ht
i is given by

~ht
i ¼ �@E=@~mi, where

E ¼ �
X
i¼1; 2

ðkm2
i; z þ ~mi � ~hÞ þ g½~m1 � ~m2 � 3ð~m1 � n̂Þð~m2 � n̂Þ�

(2)

is the total energy per particle volume V in units of l0M2
s

(l0: vacuum permeability). Here both particles have their

EAs along the z-direction, and the uniaxial parameter k sum-

marizes both shape and exchange contributions to the mag-

netic anisotropy. In addition, ~h ¼ ~H=Ms where ~H is a

homogeneous and static external field on both particles. The

parameter g � V
ð4pd3Þ is a geometric factor characterizing the

DDI with d being the fixed distance between the two par-

ticles whose direction is described by the unit vector n̂. Here

we omit the exchange interaction energy between the two

particles since it becomes important only at very small parti-

cle distances. Moreover, in the synchronized magnetic dy-

namics to be investigated below, it only contributes a

constant to the energy and will therefore not change the

physical behavior.

Let us focus on two typical geometrical configurations

where the connecting unit vector n̂ is either perpendicular

or parallel to the anisotropy axes, referred to as PERP and

PARA configuration, respectively (see insets in Fig. 1). That

is, introducing spherical coordinates ~mi ¼ ðsin hi cos /i;
sin hi sin /i; cos hiÞ, n̂ ¼ ðsin hn cos /n; sin hn sin /n; cos hnÞ,
we have hn ¼ p=2 for PERP configuration and hn ¼ 0 for

PARA (or hn ¼ p since DDI is invariant under n̂ 7! � n̂).

Moreover, without loss of generality, we can let /n ¼ 0 for

both configurations, i.e. n̂ ¼ x̂ in PERP and n̂ ¼ ẑ in PARA,

as shown in insets of Fig. 1. Furthermore, we concentrate on

the synchronized magnetic dynamics of the two Stoner par-

ticles, where both magnetization vectors remain parallel

throughout the motion, h1 ¼ h2 ¼ h, /1 ¼ /2 ¼ /. Thus, the

two particles behave like a single entity, and this two-body

Stoner particle can be regarded as a computer information

bit. We have verified by numerical simulations (see discus-

sion below) that this dynamical regime is stable against

perturbations. For this synchronized motion mode, the non-

linear coupled LLG Eq. (1) read in spherical coordinates

_hþ a sin h _/ ¼ �3g cos w sin hn sin /;

a _h� sin h _/ ¼ h sin h� k sin 2hþ 3g
2

@ cos2 w
@h

; (3)

where w is the angle between ~m and n̂, i.e., cos w
¼ cos h cos hn þ sin h sin hn cos /. Here we have put ~h ¼ �hẑ
(antiparallel) along the EA, which is the conventional field

configuration for reversing a magnetic bit. The above equa-

tions are the starting point of our numerical calculations to be

discussed below.

III. RESULTS AND DISCUSSION

A. Analytical results: Modified SW limit

In order to analytically explore the SW limit for magnetic

reversal,7,16 we assume the external field to lie in the plane

spanned by the anisotropic axis and the interparticle direction,
~h ¼ hzẑþ hxx̂. The energy for the synchronized motion

mode takes the form E ¼ �2k cos2 h� 2hz cos h� 2hx sin h
þgð1� 3 cos2 wÞ with w ¼ h� hn. The SW limit occurs at

the inflection of the energy as a function of h, i.e.,

@E=@h ¼ @2E=@h2 ¼ 0. An elementary calculation translates

this condition into

hx

2k � 3g

� �2=3

þ hz

2k � 3g

� �2=3

¼ 1; (4)

where the minus (plus) sign corresponds to the PERP (PARA)

configuration, respectively. Note that in the absence of DDI,

g ¼ 0, the above equation just recovers the usual SW limit for

a single Stoner particle.7,16 As a result, the critical switching

field hc (applied antiparallel to the EA) is given by

hPERP
c ¼ j2k � 3gj; hPARA

c ¼ 2k þ 3g: (5)

This analytical solution (5) is shown by the solid and dashed

lines in Fig. 1.

FIG. 1. (Color online) The (normalized) critical switching field hc versus the

DDI strength g for PERP and PARA configuration illustrated in the insets. An-

alytical results (solid and dashed lines) are compared with numerical findings

(circles and squares). The system parameters are k ¼ 0:5 and a ¼ 0:1.
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Moreover, the above findings imply the remarkable ob-

servation that in the PERP configuration there exists a criti-

cal DDI strength gc ¼ 2k=3 such that the critical switching
field vanishes! (hc ¼ 0). Although this result was implied in

some pioneering studies,22,23 we would like to point out that

the importance of zero-field synchronized switching may

have a new technological prospective for nanomagnetism

storage industry, which will be the focus of our paper and

discussed in detail.

The zero-field condition is achieved for interparticle dis-

tances given by

dc ¼
3l0M2

s V

8pK

� �1=3

; (6)

where K ¼ kl0M2
s is the standard anisotropy coefficient.

Remarkably, the above condition is independent of the damp-

ing, and its physical contents can be illustrated in terms of the

energy landscape. In the PERP configuration, the energy in the

absence of an external field is E ¼ �2gþ 3ðg� gcÞ cos2 h.

Thus, for g ¼ gc, any angle h represents an equilibrium posi-

tion such that an arbitrary small field is sufficient to rotate the

magnetization vector along the field direction, implying the

possibility of zero-field reversal. Moreover, for g > gc, the

zero-field ground state in this synchronized motion mode is

given by h ¼ p=2, i.e., the synchronized magnetization vectors

point along the interparticle axis, while for g < gc, the ground

state magnetization is along the EAs, h ¼ 0; p.

B. Numerical Results

In order to complement and quantitatively support our

previous discussion, we have performed numerical simula-

tions of the dynamical LLG Eq. (3) using the fourth-order

Runge-Kutta scheme. We consider a range of the DDI pa-

rameter of 0 � g � 1. The case, g ¼ 0 corresponds to the

limit d !1, i.e., the two nanoparticles being infinitely

apart. Large g can be realized by fabricating magnetic nano-

particles of ellipsoidal shape allowing for a closer proximity.

Throughout the numerical results shown here, we use a typi-

cal damping parameter of a ¼ 0:1. In Fig. 1 we compare

simulation results for the critical switching field with the an-

alytical formulae (5), both findings being in excellent agree-

ment. The critical switching field in the PARA configuration

is always higher than the value without DDI. Thus, only the

PERP configuration will be useful for possible technological

applications.

Let us now turn to the reversal time Tr, i.e., the duration

of the reversal process of the magnetization direction chang-

ing the angle h from 0 to p. To avoid the metastable points

h ¼ 0; p, we introduce two small deviations di; df , by defin-

ing hi ¼ di (i.e., mz 	 1) and hf ¼ p� df (i.e., mz 	 �1),

which leads to a finite reversal time in our simulations. In the

PARA configuration, one can derive a closed analytical

expression for this quantity (see Appendix),

Tr ¼�k
lndi

h� h0

þ lndf

hþ h0

þ h0 ln hþ h0ð Þ= h� h0ð Þ½ �� h ln4

h2� h2
0

� �
;

(7)

where h0 ¼ 2k þ 3g and k ¼ aþ a�1. Note that the case

g ¼ 0 also includes the PERP configuration since both con-

figurations are indistinguishable here and just for a single

Stoner particle. The first two terms will dominate the major

contributions in Tr since di; df is small.

In Fig. 2(a) we show simulation results for Tr in the

PARA configuration, where we have set k ¼ 0:5,

di ¼ df ¼ 0:001, and various g. The simulation data is well

described by the approximate expression Tr ’ 2khð� ln diÞ½ �
ðh2�h2

0
Þ valid

for small di ¼ df 
 1. As a result, in the PARA configuration

the reversal time increases with increasing strength of the

dipolar interaction. The sensitivity of the data to the parame-

ters di (where df is fixed or vice versa) is illustrated in Fig.

2(b): In accordance with Eq. (7), the reversal time depends

only logarithmically on the quantity and does not change its

order of magnitude while di is changing over several powers

of 10. Thus our results are not qualitatively affected by our

choice of the condition di ¼ df ¼ 0:001.

A similar result regarding the sensitivity to initial condi-

tions is obtained in the PERP configuration. Here an analyti-

cal result comparable to Eq. (7) does not seem to be

FIG. 2. (Color online) PARA configuration: (a) Reversal time Tr versus field

magnitude h at different DDI strength g. The simulation data (symbols) is fit-

ted according to the approximate expression Tr ’ 2khð� ln diÞ½ �= h2 � h2
0

� �
for di ¼ df ¼ 0:001, and k ¼ 0:5, a ¼ 0:1 (cf. Fig. 1). (b) Dependence of Tr

on the initial condition di: Simulation data along with exact analytical results

according to Eq. (7). The final state is fixed to be df ¼ 0:001.
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achievable. However, the simulation data is shown in Fig.

3(b) that Tr again depends only logarithmically on di and is

therefore similarly insensitive to the initial condition as in

the PARA case. The dependence of the reversal time on the

dipolar parameter g shown in Fig. 3(a), however, is strikingly

different from the PARA configuration: Here Tr clearly

decreases with increasing g, especially in the regime of low

fields, which also strongly favors the two-body bit imple-

mentation proposed in this paper.

C. Zero-field Reversal

From the previous discussion we notice that, around the

critical DDI strength gc, we find not only nearly a zero critical

switching field but also a substantially shorter reversal time.

This result promises attractive future applications for com-

puter technology, such as fast read/write hard disk or mag-

netic memory. Let us discuss two schematic setups for

experimentally realizing the zero-field switching mechanism.

The first scheme A is illustrated in the upper-left panel of Fig.

4, along with a numerical simulation in Fig. 4(a). Here we

chose again k ¼ 0:5, and the DDI parameter is

g ¼ 0:32 < gc ¼ 1=3. Thus, the magnetization in the

zero-field ground state of the synchronization mode points

along the EA (z-axis).31 Implementation steps of scheme A

are demonstrated as follows: Step 1—First we choose a casual

initial condition near this ground state, for instance

m1zð0Þ ¼ m2zð0Þ ¼ 0:5, to mimic the relaxation of the system

to the parallel state under zero-field during 0 < t < 500; Step
2—Then we apply a tiny antiparallel field h ¼ 0:03 during

500 < t < 1000 which drives the magnetization reversal pro-

cess of the two-body Stoner particle along the field direction.

The reversal time is found to be Tr 	 198ðjcjMsÞ�1
, and the

inset in Fig. 4(a) shows the reversal process on a smaller

scale; Step 3—Finally we quench the field and obtain the new

stable parallel magnetic state along the opposite direction.

The second scheme B is sketched in the upper-right

panel of Fig. 4 along with a numerical simulation in Fig.

4(b). Here g ¼ 0:34 > gc ¼ 1=3 for k ¼ 0:5, i.e., the zero-

field ground state in the synchronization mode is along the

hard axis (x-direction), and a field along the EA is perma-

nently required to preserve the magnetization state (informa-

tion).32 However, our results show that such a field can be

very small and actually close to 0. Thus, it is not implausible

to generate such a field as the Oersted field of tiny switchable

currents. The reversal process can be implemented as fol-

lows: Step 1—We again choose the initial condition

m1zð0Þ ¼ m2zð0Þ ¼ 0:5, and the system relaxes to its meta-

stable ground state (x-axis) during 0 < t < 500. Then we

apply a tiny field h ¼ �0:03 (note our definition ~h ¼ �hẑ) to

preserve the magnetic state mz ¼ 1 during 500 < t < 1000;

Step 2—After t > 1000 the field is reversed to h ¼ 0:03, and

the two-body particle reverses its magnetization during a re-

versal time as Tr 	 155ðjcjMsÞ�1
[see also inset in Fig.

4(b)]; Step 3—The reverse field is applied permanently to

preserve the reversal bit information.

D. Discussion

We now address the stability of the synchronization dy-

namics of the two-body particle as studied so far. Let us first

investigate small deviations of the initial magnetization

directions of the two subparticles being otherwise still identi-

cal. In detail, we fixed the initial direction (at t¼ 500 in re-

versal scheme A, and at t¼ 1000 for scheme B) of one

subparticle to be close to the z-axis, i.e., h1 ¼ 0:001, and

changed the other initial direction to h2 ¼ 0:001þ d. The

result is shown in Fig. 4(c) and 4(e): For a finite range of

deviations, d < 7:8� (d < 4:5�) in scheme A(B), the

synchronized motion remains stable, while for substantially

larger d, the average magnetization mostly reaches zero.

Let us now consider another case where the two particles

differ slightly in anisotropy Ki, volume Vi, saturation magnet-

ization Ms; i (i ¼ 1; 2). Here the zero-field mechanism still

occurs at gc ¼ ðk1 þ k2Þ=3 ¼ 2ðK1V1þK2V2Þ
3l0Ms1Ms2ðV1þV2Þ. However, the

effective field experienced by each particle will also be

slightly different. To numerically check the stability under

such different external fields, we fixed the field on one subpar-

ticle to h1 ¼ 0:03 and changed the field on the other subpar-

ticle as h2 ¼ 0:03þ dh. The numerical results are given in

Fig. 4(d) and 4(f) for reversal schemes A and B, respectively,

and demonstrate again a finite range of stability against devia-

tions from the case of strictly identical particles.

FIG. 3. (Color online) PERP configuration: (a) Reversal time Tr obtained

from numerical simulations vs field magnitude h at different DDI strength g.

(b) Tr as a function of the initial condition di. All other parameters are the

same as Fig. 2.
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Numerically we have also checked that a slight devia-

tion in the damping parameter a of the two particles will

result in a similar synchronization stability range in both

schemes. The dependence of the initial angle deviations [d in

Fig. 4(c) and 4(e)] and the effective field differences [dh in

Fig. 4(d) and 4(f)] on the damping parameter a has been also

numerically investigated. It is shown that large a will enlarge

the stability range for initial angle deviation, however the

stability range for dh increases at small damping and

decreases for larger a, i.e., an optimal a value exists where a

maximum deviation of dh occurs. The details will be pre-

sented elsewhere.

To give a concrete and practical example of our findings,

let us discuss the case of cobalt (Co) particles. The standard

data is Ms ¼ 1400 kA/m, uniaxial strength K ¼ 105 J/m3,

a ¼ 0:1.13 Thus k ¼ K=ðl0M2
s Þ ¼ 0:04 such that gc ¼ 0:027.

For two spherical particles with radius r, i.e., the DDI parame-

ter g ¼ r3=ð3d3Þ, the critical DDI strength is reached at

dc ¼ 2:3r. The critical switching field without DDI (SW

limit) is HSW ¼ 2K=ðl0MsÞ ¼ 1400 Oe. In the presence of

DDI, and considering deviations Dd from dc, one can express

the critical switching field as Hc=HSW ¼ 3jDdj=dc. Thus, in

order to drastically reduce the switching field by taking

advantage of our proposal, one has to engineer the interpar-

ticle distance on a scale of dc ¼ 2:3r which is typically a few

hundred nanometers. In the case of Co, the time unit is

ðjcjMsÞ�1 ¼ 3:23 ps rendering the reversal times in the

schemes A and B to be Tr 	 0:64 ns and Tr 	 0:5 ns, respec-

tively, which are much shorter than in the conventional setup.

Another important issue concerns thermal fluctuations.

For g < gc the ground state (h ¼ 0; p) in the synchronized

motion is stable if the energy barrier in presence of DDI is

large compared to the thermal energy 3ðDgÞl0M2
s V � kBT

(kB: Boltzmann’s constant), which translates for T¼ 400K and

the above parameters for Co into ðDgÞr3 � 0:18 nm3. On the

other hand, the energy scale of the applied field should also be

large compared to thermal effects, 2l0MsHV � kBT, which,

under the same conditions, reduces to H � 4700=r3 Oe nm3.

Thus, considering a typical particle radius of r¼ 100 nm, i.e.,

dc ¼ 230 nm, and Hc=HSW ¼ 0:03, i.e., Hc ¼ 42 Oe, both

conditions are easily satisfied, ðDgÞr3 ¼ 810 nm3 � 0:18 nm3

and Hc ¼ 42 Oe� 0:0047 Oe.

Finally, we would like to remark that our general

results regarding the influence of dipolar interaction on the

critical switching field of two-body Stoner particles are

consistent with recent experimental and micromagnetic

simulation results showing that the coercive field for an

array of nanowires can be lower than for a single nano-

wire.33 The effects due to more complicated dipolar inter-

action forms of nonspherical particles at close distances

and the nonuniform magnetization excitation will be also

interesting for the proposed synchronized dynamics, but

the detailed studies are beyond this paper and may be a

future research direction.

IV. CONCLUSION

In conclusion, we have investigated magnetization re-

versal of two-body Stoner particles system, which could play

FIG. 4. (Color online) Upper panels: Two schemes of zero-field reversals of

the two-body Stoner particle. Scheme A: A magnetic field (h) is applied

only during step 2 with nanoseconds; Scheme B: h is always applied with

changing its direction from step 2. Middle panels: mzðtÞ versus time at (a)

g ¼ 0:33 < gc ¼ 1=3, (b) g ¼ 0:34 > gc ¼ 1=3. In (a), an antiparallel field

h ¼ 0:03 is applied only during the time interval 500 < t < 1000 with a re-

versal time of Tr 	 198ðjcjMsÞ�1
; In (b), a parallel field h ¼ �0:03 is

applied during 500 < t < 1000 and then reversed to h ¼ 0:03, leading to a

reversal time as Tr 	 155ðjcjMsÞ�1
. The insets show the reversal process on

a smaller scale. Bottom panels (c) & (e): Average stable magnetization

ðm1z þ m2zÞ=2 vs the deviation angle d ¼ h2 � h1 (in degrees) between the

initial magnetization directions in the two schemes A and B, respectively.

The starting width of d: (c) 0� 7:8 and (e) 0� 4:5 reveals the stability

ranges for the synchronized dynamics. (d) and (f): Analogous data as a func-

tion of the deviation field dh ¼ h2 � h1 antiparallel to the easy axis in two

schemes. The width of dh: (d) �0:006� 0:003 and (f) �0:011� 0:006

shows the stability ranges.
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the role of an information bit, under a static magnetic field.

In presence of magnetic dipolar interaction, a stable

synchronized motion of the two dipoles is found, where the

modified Stoner-Wohlfarth limit, namely the critical switch-

ing field, is analytically obtained and numerically verified.

We propose a new technological perspective: by engineering

an appropriate dipolar interaction strength (i.e., the interpar-

ticle distance), the critical switching field can be dramati-

cally lowered even including zero in a perpendicular

configuration where the easy-axes and the connecting line of

two particles are perpendicular. Moreover, the dipolar inter-

action also contributes to substantially shorten the reversal

time around the zero-field regime. This result can offer pos-

sibilities to new magnetic information storage devices and/or

fast magnetic-response devices.

APPENDIX: DERIVATION OF EQ. (7)

To derive Eq. (7), one can write down the dynamical

equation of the h angle in PARA configuration as

k _h ¼ h sin h� h0 sin 2h=2; (A1)

where k ¼ aþ a�1, h0 ¼ 2k þ 3g, k denotes the uniaxial ani-

sotropy and g the dipolar interaction parameter. The reversal

time from the initial angle hi to the final destination hf can

be defined as

Tr ¼
ðhf

hi

dh= _h ¼ k
ðhf

hi

½h sin h� h0 sin 2h=2��1dh: (A2)

The integral can be calculated analytically,

Tr ¼
k
2

1

h� h0

ln
1� cos hf

1� cos hi

����
����� 1

hþ h0

�

� ln
1þ cos hf

1þ cos hi

����
����� 2h0

h2 � h2
0

ln
h� h0 cos hf

h� h0 cos hi

����
����
�
: (A3)

In order to obtain a finite time, i.e. avoiding the metastable

points at h ¼ 0; p, we can let hi ¼ di and hf ¼ p� df , where

di; df 
 1. By using the approximation cos di; f 	 1� d2
i; f=2

and substituting them into the above equation, one can

directly obtain Eq. (7).
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