https://ntrs.nasa.gov/search.jsp?R=19760017178 2020-03-22T15:42:29+00:00Z

NASA TN D-8176 c.l

LIBF .

IBRARY KAFB,

NASA TECHNICAL NOTE

NASA TN D-8176

LOAN COPY: RETURN

KIRTLAND AFB. N.

FWL TECHNICAI

6

SIMULATOR STUDY OF THE EFFECTIVENESS OF AN AUTOMATIC CONTROL SYSTEM DESIGNED TO IMPROVE THE HIGH-ANGLE-OF-ATTACK CHARACTERISTICS OF A FIGHTER AIRPLANE

William P. Gilbert, Luat T. Nguyen, and Roger W. Van Gunst Langley Research Center Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1976

1. Report No. NASA TN D-8176	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle SIMULATOR STUDY OF THE EFFECTIVENESS OF AN AUTOMATIC CONTROL SYSTEM DESIGNED TO IMPROVE THE HIGH-ANGLE-OF-ATTACK CHARACTERISTICS OF A FIGHTER AIRPLANE		5. Report Date May 1976
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
William P. Gilbert, Luat T. Nguyen, and Roger W. Van Gunst		L-10545
· · · · · · · · · · · · · · · · · · ·		10. Work Unit No.
9. Performing Organization Name and Address		505-06-95-01
NASA Langley Research Center		11. Contract or Grant No.
Hampton, Va. 23665		
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Technical Note
National Aeronautics and Space Administration		14. Sponsoring Agency Code
Washington, D.C. 20546		
15. Supplementary Notes		L

16. Abstract

A piloted, fixed-base simulation has been conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simula-tor, and the evaluation involved representative combat maneuvering.

Results of the investigation showed the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system was found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system was shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.

 17. Key Words (Suggested by Author(s)) Stall and poststall motion simulation Stability and control, fighter Automatic control Departure prevention Air combat maneuvering 		 18. Distribution Statement Unclassified – Unlimited Subject Category 08 		
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22. Price*
Unclassified Unclassified			155	\$6.25

For sale by the National Technical Information Service, Springfield, Virginia 22161

SIMULATOR STUDY OF THE EFFECTIVENESS OF AN AUTOMATIC CONTROL SYSTEM DESIGNED TO IMPROVE THE HIGH-ANGLE-OF-ATTACK CHARACTERISTICS OF A FIGHTER AIRPLANE

William P. Gilbert, Luat T. Nguyen, and Roger W. Van Gunst Langley Research Center

SUMMARY

A piloted, fixed-base simulation has been conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering.

Results of the investigation showed the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/ normal-acceleration limiting feature of the pitch control system was found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system was shown to be very effective in making the airplane departure resistant, while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.

INTRODUCTION

High-performance fighter airplanes must be capable of effectively engaging in closerange, air-to-air combat involving vigorous maneuvering at high angles of attack near maximum lift. However, many current fighter configurations exhibit poor stability and control characteristics at high angles of attack, such as directional divergence ("nose slice"), reduced dihedral effect, low rudder effectiveness, and adverse aileron yaw. Such characteristics have caused a significant number of losses of airplanes and pilots as a result of inadvertent loss of control and spins encountered while maneuvering near maximum lift. These losses continue to persist despite a considerable amount of stall/spin testing, use of artificial stall warning systems, and strong restrictions given in pilot handbooks. The continuing number of stall/spin accidents indicates the inadequacies of present approaches to stall/spin problems.

In recent years, the evolution of more sophisticated and reliable automatic control systems has created much interest in the development of automatic control concepts which produce a spin-resistant airplane. (See refs. 1 to 4, for example.) Recent fighter designs, such as the U.S. Air Force lightweight fighter prototypes, incorporate innovative advanced control systems in which several elements have been provided for flight at high angles of attack. The present investigation was conducted to evaluate the stability and control characteristics of the YF-16 design at high angles of attack, with particular emphasis on the effects of the control system on these characteristics. The study was conducted on the Langley differential maneuvering simulator and the piloting tasks were designed to determine the departure susceptibility of the configuration during hard maneuvering at high angles of attack. The objectives of the study were (1) to determine the controllability and departure resistance of the present configuration during 1g stalls and accelerated stalls, (2) to determine the departure susceptibility of the configuration during demanding air combat maneuvers, (3) to identify maneuvers or flight conditions which might overpower the departure-resistant characteristics provided by the control system, and (4) to identify the favorable characteristics of various elements of the control system at high angles of attack. The aerodynamic data used in the simulation were based on the results of low-speed, small-scale wind-tunnel tests of a 0.15-scale model of the configuration tested at Langley Research Center with no adjustments being made for either Revnolds number or Mach number effects.

SYMBOLS AND NOTATION

All aerodynamic data and flight motions are referenced to the body system of axes shown in figure 1 with the exception of lift, which is presented with respect to wind axes. The units for physical quantities used herein are presented in the International System of Units (SI) and U.S. Customary Units. The measurements and calculations were made in U.S. Customary Units. Conversion factors for the two systems are given in reference 5.

an	normal acceleration, positive along negative Z body axis, g units
^a n,com	pilot-commanded normal acceleration, g units
ay	lateral acceleration, positive along positive Y body axis, g units

2

b	wing span, m (ft)
C_L	lift coefficient, $\frac{\text{Aerodynamic lift force}}{\overline{q}S}$
C _l	rolling-moment coefficient about X body axis, $\frac{\text{Aerodynamic rolling moment}}{\overline{q}\text{Sb}}$
C _{l,t}	total rolling-moment coefficient
c _m	pitching-moment coefficient about Y body axis, $\frac{\text{Aerodynamic pitching moment}}{\overline{qSc}}$
c _{m,1}	pitching-moment coefficient data used to represent mild trim point at high angle of attack
C _{m,2}	pitching-moment coefficient data used to represent conventional high-angle- of-attack variation
c _{m,t}	total pitching-moment coefficient
C _n	yawing-moment coefficient about Z body axis, $\frac{\text{Aerodynamic yawing moment}}{\overline{q}Sb}$
c _{n,t}	total yawing-moment coefficient
c _x	X-axis force coefficient along positive X body axis, $\frac{\text{Aerodynamic X-axis force}}{\overline{q}S}$
c _{X,t}	total X-axis force coefficient
Cy	Y-axis force coefficient along positive Y body axis, $\frac{\text{Aerodynamic Y-axis force}}{\overline{q}S}$
c _{y,t}	total Y-axis force coefficient

ļ

C _Z	Z-axis force coefficient along positive Z body axis, Aerodynamic Z-axis force \overline{qS}
c _{z,t}	total Z-axis force coefficient
ē	wing mean aerodynamic chord, m (ft)
Flat	pilot lateral stick force, positive for right roll, N (lb)
Flong	pilot longitudinal stick force, positive for positive normal acceleration, N $$ (lb)
Flong	F_{long} less mechanical preload force, N (lb)
Fped	pilot pedal force, N (lb)
g	acceleration due to gravity, m/sec^2 (ft/sec ²)
h	altitude, m (ft)
$\mathbf{I}_{X},\!\mathbf{I}_{Y},\!\mathbf{I}_{Z}$	moments of inertia about X, Y, and Z body axes, kg-m 2 (slug-ft 2)
I_{XZ}	product of inertia with respect to X and Z body axes, kg-m 2 (slug-ft 2)
К	ARI rudder-aileron gain
М	Mach number
m	airplane mass, kg (slugs)
N _{Re}	Reynolds number based on \overline{c}
P ₁	engine power command based on throttle position, percent of maximum power
P2	engine power command to engine, percent of maximum power

P ₃	engine power, percent of maximum power
р	airplane roll rate about X body axis, deg/sec or rad/sec
p _{com}	pilot-commanded roll rate, deg/sec
q	airplane pitch rate about Y body axis, deg/sec or rad/sec
q	free-stream dynamic pressure, N/m^2 (lb/ft ²)
R	range, straight-line distance between subject and target airplanes, m (ft)
r	yaw rate about Z body axis, deg/sec or rad/sec
rstab	approximate stability-axis yaw rate, $r - p\alpha$, rad/sec
S	wing area, m^2 (ft ²)
S	Laplace variable, 1/sec
Т	total instantaneous engine thrust, N (lb)
T _{idle}	idle thrust, N (lb)
T _{max}	maximum thrust, N (lb)
T _{mil}	military thrust, N (lb)
t	time, sec
t _{1/2}	time to damp to one-half amplitude, sec
u,v,w	components of airplane velocity along X, Y, and Z body axes, m/sec (ft/sec)
v	airplane resultant velocity, m/sec (ft/sec)

I

5

•

X,Y,Z	airplane body axes (see fig. 1)
$\mathbf{X}_{\mathbf{I}}, \mathbf{Y}_{\mathbf{I}}, \mathbf{Z}_{\mathbf{I}}$	orthogonal inertial axes
xcg	center-of-gravity location, fraction of \overline{c}
^x cg,ref	reference center-of-gravity location for aerodynamic data, fraction of \overline{c}
α	angle of attack, deg
$lpha_{\mathbf{f}}$	filtered α signal, deg
α_0	threshold value of angle of attack, deg
β	angle of sideslip, deg
γ	flight-path angle, deg
δ_a	aileron deflection, positive for left roll, deg
^δ a,c	aileron deflection commanded by control system, deg
δD	differential horizontal tail deflection, positive for left roll, deg
$\delta_{\mathbf{h}}$	horizontal stabilator deflection, positive for airplane nose-down control, deg
δlef	leading-edge flap deflection, deg
$\delta_{\mathbf{r}}$	rudder deflection, positive for left yaw, deg
$^{\delta}$ r,com	pilot-commanded rudder deflection, deg
δ _{sb}	speed-brake deflection, deg
e	tracking error, angle between evaluation airplane X body axis and range vector \overline{R} (angle off), deg

 θ, ϕ, ψ Euler angles, deg

 $^{\tau}\mathbf{T}$

engine thrust time constant, sec

$$C_{lp} = \frac{\partial C_l}{\partial \frac{pb}{2V}} \qquad C_{lr} = \frac{\partial C_l}{\partial \frac{rb}{2V}} \qquad C_{l\beta} = \frac{\partial C_l}{\partial \beta} \qquad C_{l\delta_a} = \frac{\partial C_l}{\partial \delta_a}$$

$$C_{l_{\delta_{r}}} = \frac{\partial C_{l}}{\partial \delta_{r}} \qquad C_{m_{q}} = \frac{\partial C_{m}}{\partial \frac{q\overline{c}}{2V}} \qquad C_{n_{p}} = \frac{\partial C_{n}}{\partial \frac{pb}{2V}} \qquad C_{n_{r}} = \frac{\partial C_{n}}{\partial \frac{rb}{2V}}$$

$$C_{n_{\beta}} = \frac{\partial C_{n}}{\partial \beta} \qquad C_{n_{\beta}, dyn} = C_{n_{\beta}} - \frac{I_{Z}}{I_{X}} C_{l_{\beta}} \sin \alpha \qquad C_{n_{\delta_{a}}} = \frac{\partial C_{n}}{\partial \delta_{a}} \qquad C_{n_{\delta_{r}}} = \frac{\partial C_{n}}{\partial \delta_{r}}$$

$$C_{X_{q}} = \frac{\partial C_{X}}{\partial \frac{q\overline{c}}{2V}} \qquad C_{Z_{q}} = \frac{\partial C_{Z}}{\partial \frac{q\overline{c}}{2V}} \qquad C_{Y_{p}} = \frac{\partial C_{Y}}{\partial \frac{pb}{2V}} \qquad C_{Y_{r}} = \frac{\partial C_{Y}}{\partial \frac{rb}{2V}}$$

Subscripts:

- $$\begin{split} \delta_i = j & \quad \text{deflection of control surface } i \quad \text{to value } j; \text{ for example, } \Delta C_{l, \delta_h} = -25^o \\ & \quad \text{indicates increment of } C_l \text{ produced by deflection of horizontal tail} \\ & \quad \text{to } \delta_h = -25^o \end{split}$$
- $\begin{array}{ll} \mbox{lef} & \mbox{increment of variable produced by full retraction of leading-edge flaps; for} \\ & \mbox{example, } \Delta C_{m,lef} & \mbox{indicates increment in } C_m & \mbox{produced by retraction} \\ & \mbox{of leading-edge flaps from } 25^0 \mbox{ to } 0^0 \\ \end{array}$

sb increment in variable produced by deflection of speed brake

Abbreviations:

- ACM air combat maneuvering
- ARI aileron-rudder interconnect
- rms root mean square

A dot over a symbol denotes a time derivative of the variable.

DESCRIPTION OF AIRPLANE

A three-view sketch of the YF-16 configuration is shown in figure 2, and the mass and geometric characteristics used in the simulation are listed in table I. The airplane control system is described in detail in appendix A. The primary deflections of the control surfaces used for the present configuration are symmetric deflection of the horizontal tail (stabilator) for pitch control, deflection of conventional wing-mounted ailerons and differential deflection of the horizontal stabilators for roll control, and rudder deflection for vaw control. Special features of the configuration include (1) the use of a normalacceleration command longitudinal control system which provides static stability, normalacceleration limiting, and angle-of-attack limiting, (2) the use of a wing leading-edge flap which is automatically deflected as a function of angle of attack and Mach number, (3) the use of a roll-rate command system in the roll axis. (4) the use of an aileron-rudder interconnect and a stability-axis yaw damper in the yaw axis, and (5) the use of a forceactuated (minimum displacement) side-stick controller and force-actuated rudder pedals. The simulations of the airplane engine characteristics and buffet characteristics are described in appendix B. All simulated flights were made for a center-of-gravity location of 0.35c.

DESCRIPTION OF SIMULATOR

The Langley differential maneuvering simulator (DMS) is a fixed-base simulator which has the capability of simultaneously simulating two airplanes as they maneuver with respect to one another, including a full, wide-angle visual display for each pilot. A sketch of the general arrangement of the DMS hardware and control console is shown in figure 3. Two 12.2-m (40 ft) diameter projection spheres each enclose a cockpit, an airplane-image projection system, and a sky-Earth-Sun projection system. A control console located between the spheres is used for interfacing the hardware and the computer and displays critical parameters for monitoring of the hardware operation. Each pilot is provided a projected image of his opponent's airplane, with the relative range and attitude of the target shown by use of a television system controlled by the computer program.

Cockpit and Associated Equipment

A photograph of one of the cockpits and the target visual display is shown in figure 4. A cockpit and an instrument display representative of current fighter aircraft equipment are used together with a fixed gunsight for tracking. Each cockpit was located to position the pilot's eyes near the center of the sphere, which resulted in a field of view representative of that obtained in current fighter airplanes. For the present study, a special modification was made to one cockpit to incorporate the side-stick controller as shown in figure 5. The controller was placed in the same general location as the controller in the actual airplane; however, no special armrest was provided (as is the case in the actual airplane) other than the regular seat armrest which provided more of an elbow rest than a support for the forearm. The normal hydraulic control feel system was not employed for this simulation since the side-stick controller and rudder pedals were force sensitive with no deflection required to activate the controls. Although the cockpits are not provided with attitude motion, each cockpit incorporated a buffet system capable of providing programmable rms buffet accelerations as high as 0.5g with up to three primary structural frequencies simulated.

Visual Display

The visual display in each sphere consists of a target image projected onto a sky-Earth scene. The sky-Earth scene is generated by two point light sources projecting through two hemispherical transparencies, one transparency of blue sky and clouds and the other of terrain features; the scene provides a well-defined horizon band for reference purposes. No provision is made to simulate translational motions with respect to the sky-Earth scene (such as altitude variation); however, spatial attitude motions are simulated. A flashing light located in the cockpit behind the pilot is used as a cue when an altitude of less than 1524 m (5000 ft) is reached. The target-image generation system uses an airplane model mounted in a four-axis gimbal system and a television camera with a zoom lens to provide an image to the target projector within the sphere. The system can provide a simulated range between airplanes from 90 m (300 ft) to 13 700 m (45 000 ft) with a 10-to-1 brightness contrast between the target and the sky-Earth background at minimum range.

Additional special effects features of the DMS hardware include simulation of blackout at high normal accelerations (see appendix B), use of an inflatable anti-g garment for simulation of normal-acceleration loads, and use of sound cues to simulate wind, engine, and weapons noise as well as artificial warning systems. Additional details on the DMS facility are given in reference 6.

Computer Program and Equipment

The DMS is operated with real-time digital simulation techniques and a Control Data Corporation 6600 computer. The motions of the evaluation airplane were calculated by using equations of motion with a fixed-interval (1/32 sec) numerical integration technique. The equations used nonlinear aerodynamic data as functions of α and/or β in tabular form. These data were derived from results of low-speed static and dynamic (forced oscillation) force tests conducted at a Reynolds number of about 0.8×10^6 and a Mach number of about 0.1. The data included an angle-of-attack range from -10° to 90° and a sideslip range from -40° to 40°. Effects of Mach number, Reynolds number, or aeroelasticity were not included in the mathematical model. Complete descriptions of the aerodynamic data and the equations of motion are given in appendix B.

DISCUSSION OF AERODYNAMIC CHARACTERISTICS

To provide a foundation for the analysis and interpretation of the simulation results which follow, the aerodynamic stability and control characteristics of the simulated airplane configuration are presented and discussed in this section. The reader is cautioned that an analysis of the characteristics of the basic airframe is not directly applicable to the complete configuration in view of the extensive control system augmentation employed in the airplane and the large effects that the control system produced at high angles of attack.

Longitudinal Characteristics

The longitudinal aerodynamic data are listed in tables II to VII and the representation of the characteristics in the simulation is discussed in appendix B. One unique characteristic of the present configuration is that it exhibits essentially neutral stability in pitch at the combat center of gravity position $(0.35\overline{c})$ at subsonic speeds, as shown in figure 6(a). The longitudinal control system (see appendix A) is equipped with angle-ofattack feedback to provide artificial pitch stability. The lift curve shown in figure 6(a) is relatively linear up to about $\alpha = 25^{\circ}$, with maximum lift occurring near $\alpha = 35^{\circ}$. Associated with the pitch stability augmentation system of the study configuration is an angleof-attack/normal-acceleration limiting system which avoids overshoots in angle of attack; this system attempts to limit the angle of attack to below about $\alpha = 27^{\circ}$. A further discussion of the complete pitch control system is given in appendix A.

The results of wind-tunnel tests on models of the configuration at several Reynolds numbers (range from 0.8×10^6 to about 4.5×10^6) showed significantly different pitching-moment values above $\alpha = 40^\circ$. In particular, results from the Langley tunnel tests $(N_{Re} = 0.8 \times 10^6)$ showed deep-stall trim points at high angles of attack above 50° , where-as the results from higher Reynolds number tests showed a reduction in stability but no deep-stall trim condition. To determine the relative significance of the trim point indicated by the low-speed tests, three pitching-moment curves were considered at $\beta = 0^\circ$ between $\alpha = 40^\circ$ and $\alpha = 70^\circ$ as shown in figure 6(b). The circular symbols represent the basic Langley data while the other two curves were faired in to represent a mild trim point (square symbols) more representative of the higher Reynolds number condition and a conventional curve (diamond symbols). The values of C_m used in the simulation were adjusted over the entire sideslip range between $\alpha = 40^\circ$ and $\alpha = 70^\circ$ by applying the differences between the various curves at $\beta = 0^\circ$.

of the effect of a particular C_m curve on recovery from poststall conditions. Another important aerodynamic characteristic exhibited by the configuration was the variation of C_m with β at high angles of attack as shown in figure 6(c). As can be seen, trim points were possible at large angles of sideslip because of nose-up C_m changes with increasing sideslip. This characteristic could have marked effects on poststall recovery motions which frequently involve large sideslip excursions.

Lateral-Directional Characteristics

Static lateral-directional stability. - The static lateral-directional stability characteristics of the basic configuration with scheduled leading-edge flap deflections are presented in figure 7(a) in terms of the static directional stability derivative $C_{n_{\beta}}$, the effective dihedral derivative $C_{l_{\beta}}$, and the dynamic directional stability parameter $C_{n_{\beta},dyn}$ as functions of angle of attack. The parameter $C_{n_{\beta},dyn}$, given by the expression

$$C_{n_{\beta},dyn} = C_{n_{\beta}} - \frac{I_Z}{I_X} C_{l_{\beta}} \sin \alpha$$

has been used in past investigations (refs. 7 and 8) as an indication of the existence of directional divergence (nose slice) at high angles of attack. Negative values of this parameter usually indicate the existence of a divergence. The data of figure 7(a) indicate that the configuration was statically stable (both directionally and laterally) for angles of attack up to 31°. Above $\alpha = 31°$, $C_{n\beta}$ reached large unstable (negative) values. The parameter $C_{n\beta,dyn}$ remained positive for values of α up to 34°. These results show the configuration to be statically stable throughout the operational angle-of-attack range permitted by the longitudinal control system (limit of $\alpha = 27°$). However, both directional and lateral stability decrease rapidly above $\alpha = 25°$ and a directional divergence would be expected near $\alpha = 34°$ if α is not limited.

The lateral-directional aerodynamic control characteristics for the configuration at $\beta = 0^{\circ}$ are shown in figure 7(b) in terms of moment increments caused by full control. The rudder effectiveness was high and essentially constant over the operational range of α . Roll control effectiveness of the ailerons and differential tails was good and well sus-tained up to the angle-of-attack limit with very little adverse yaw (compared with moments produced by the rudder) from either mode of roll control. These data indicate that the configuration should exhibit good lateral-directional control characteristics up to the angle-of-attack limit if proper coordination of roll and yaw controls is used to suppress the adverse yaw from roll control.

An aileron effectiveness parameter is often used to appraise the roll-control effectiveness at high angles of attack. This parameter is defined as

$$C_{n_{\beta}} - C_{l_{\beta}} \frac{C_{n_{\delta_a}}}{C_{l_{\delta_a}}}$$

for ailerons only, or by

$$\mathbf{C}_{\mathbf{n}_{\beta}} - \mathbf{C}_{l_{\beta}} \left(\frac{\mathbf{C}_{\mathbf{n}_{\delta_{a}}} + \mathbf{K} \mathbf{C}_{\mathbf{n}_{\delta_{r}}}}{\mathbf{C}_{l_{\delta_{a}}} + \mathbf{K} \mathbf{C}_{l_{\delta_{r}}}} \right)$$

where K is the rudder-aileron gain for ailerons with an aileron-rudder interconnect. The variation of this parameter with angle of attack for the present configuration is presented in figure 7(c) for the combined aileron/differential tail alone and for these controls with an aileron-rudder interconnect. A negative value of this parameter is indicative of roll reversal; when a reversal is encountered, a right roll control input by the pilot will cause the airplane to roll to the left. Even without the interconnect, the parameter remained positive up to $\alpha = 31^{\circ}$. The interconnect provided a large positive increment between $\alpha = 15^{\circ}$ and $\alpha = 30^{\circ}$. This effect would be expected to show up as higher roll rates available in flight.

<u>Dynamic lateral-directional stability</u>.- A classical linearized lateral-directional stability analysis was made by using three-degree-of-freedom equations of motion and the aerodynamic data of appendix B. The calculations were made for the following four configurations:

- (1) Basic airplane (all augmentation systems active)
- (2) Basic airplane with aileron-rudder interconnect (ARI) inoperative
- (3) Basic airplane with stability-axis yaw damper deactivated
- (4) Basic airplane with ARI and stability-axis yaw damper deactivated

The ARI system caused the rudder to deflect in conjunction with roll control inputs so as to eliminate the adverse yaw due to these surfaces. The stability-axis yaw damper applied rudder deflections in response to an $r - p\alpha$ signal in order to reduce sideslip excursions during rolling maneuvers at high angles of attack. A detailed discussion of these systems is contained in appendix A.

The results of the dynamic stability calculations are presented in figure 8 in terms of the damping parameter $1/t_{1/2}$ and the period of oscillatory modes of motion. Positive values of $1/t_{1/2}$ indicate damped, or stable, modes. Data are shown for the classical Dutch roll, spiral, and roll modes of motion as functions of α for the four cases. The data show that the roll and spiral modes are stable for values of α up to 40°, where-

as the Dutch roll mode tends to become less stable as α is increased and is unstable above $\alpha \approx 32^{\circ}$. The stability-axis yaw damper has the effect of increasing the damping of the Dutch roll mode while decreasing its frequency. The ARI, on the other hand, had little effect on the Dutch roll frequency but slightly degraded the damping; this effect is caused by the roll damper signal feeding through the ARI to create, in effect, adverse yaw due to roll rate. It is noted that the Dutch roll modes of the four cases converge as α increases such that at $\alpha = 35^{\circ}$ they are essentially the same low-frequency unstable mode. This result indicates that the lateral-directional augmentation becomes ineffective above $\alpha = 30^{\circ}$, which is to be expected since in this region the Dutch roll stability characteristics are influenced mainly by the static stability parameters $C_{n\beta}$ and $C_{l\beta}$, which are not affected by either the stability-axis yaw damper or the ARI system.

Response to lateral-directional controls. - Maximum usable roll rates obtained in bank-to-bank reversals with full lateral controls (no rudder inputs) applied for the fully augmented airplane are shown in figure 9. The data were obtained during the piloted simulation study. The maneuver used involved starting from a low-angle-of-attack, level flight condition, banking into a turn, increasing the angle of attack rapidly to a desired value, then using maximum roll control input to reverse the bank angle and stabilize in a turn in the opposite direction. The decrease in maximum roll rate with increasing α is due to a combination of decreasing airspeed, reduced control effectiveness, and increasing adverse yaw due to roll rate as evidenced by the adverse β trace. Higher values of roll rate could have been obtained if complete 360° rolls were made; however, bank-to-bank maneuvers were chosen because they more accurately represent the roll response re-quired during tactical situations.

The control system design of the present configuration produced responses due to rudder inputs which were considerably different from responses expected of conventional fighter airplanes at high angles of attack. Shown in figure 10 are time histories of the airplane response to step rudder inputs in level flights at $\alpha = 3^{\circ}$ and $\alpha = 18^{\circ}$. The resulting motions were steady sideslips with little rolling because the roll-rate command system counteracted any uncommanded roll rates. Thus, use of the rudder pedals alone is not effective for rolling and the pilot must use conventional lateral stick inputs to roll effectively, even at high angles of attack. It should be noted that this feature is desirable in that it eliminates the usual need for the pilot to make a transition from using lateral stick inputs at low values of α to using rudder pedal inputs at high values of α for roll control.

EVALUATION PROCEDURES

The results of the investigation were in the form of pilot comments and time-history records of airplane motions, controls, and tracking for the various maneuvers performed.

13

Most of the evaluations were performed with a research test pilot familiar with the air combat maneuvers used with current fighter airplanes; however, other research test pilots and contractor test pilots also flew the simulator. Linearized analyses of the dynamic stability characteristics of the combined airplane and control system were also made to aid in the interpretation of the results. Previous experience with the simulation of fighter stall/spin characteristics (see ref. 9) has shown that visual tracking tasks which require the pilot to divert his attention from the instrument panel are necessary to provide realism in studying the possibility of unintentional loss of control and spin entry. Furthermore, earlier studies (ref. 4) have shown that mild, well-defined maneuvers can produce misleading results inasmuch as a configuration that behaves fairly well in such mild maneuvers may be violently uncontrollable in the complex and pressing nature of high-g, air combat maneuvering (ACM). Finally, for purposes of evaluation in comparing the performance of several configurations, the tasks used must be repeatable. The following test procedures were implemented in order to account for the foregoing factors. In order to force the evaluation pilot to fly at high angles of attack, the target airplane was programed to have the same thrust and performance characteristics as the evaluation airplane; however, the target had idealized high-angle-of-attack stability and control characteristics. The target airplane was flown by the evaluation pilot through a series of ACM tasks of varying levels of difficulty while the target motions were tape recorded for playback later to drive the target as the task for the evaluation airplane. In this manner, repeatable tasks ranging from simple tracking tasks to complex, high-g ACM tasks were developed for use in the evaluation.

The first phase of the study consisted of pilot familiarization and development of ACM tasks for the evaluation. The pilot performed simple air tasks requiring low g levels with no target airplane in order to determine and become familiar with the stability and control characteristics of the simulated airplane. The second phase of the study involved evaluation of the simulated airplane and its various control system features in the ACM tasks developed. Four tasks were chosen for use during the study: (1) a simple high-g pullup to maximum angle of attack in a turn followed by a maximum effort bank angle reversal near maximum angle of attack (called the roll performance task), (2) a 4g to 7g steady windup turn for steady tracking evaluation (called the steady tracking task), (3) a bank-to-bank task (or horizontal S) with gradually increasing angle of attack up to maximum α to evaluate rapid rolls and target acquisition (called the bank-to-bank task), and (4) a complex, vigorous ACM task (called the general ACM task) to evaluate the simulated airplane susceptibility to high-angle-of-attack handling qualities problems during aggressive maneuvering. These four tasks are described in more detail in the following paragraphs.

Roll Performance Task

The maneuver used to evaluate the rolling performance of the simulated airplane at high angles of attack was a high-g turn involving a maximum-effort bank-angle reversal near maximum angle of attack as sketched in figure 11. This task was executed by the pilot without reference to a target in order to allow the pilot to concentrate on the response of the airplane. The task was initiated at a Mach number of 0.8 and an altitude of 9144 m (30 000 ft). Upon initiation of a run, the pilot banked the airplane into a turn and rapidly loaded to maximum commanded normal acceleration in pitch. As the angle of attack approached 25° (airplane still pulling about 4g), the pilot used full roll control to reverse his turn direction and then reduced g loading. This maneuver allowed analysis of the airplane roll response near maximum angle of attack in terms of usable roll rate, sideslip generated, and bank-angle control. (The maximum α available on the present configuration is about 27° or 28°, as previously discussed.)

Steady Tracking Task

A steady windup turn was flown, with α of the target airplane increasing to an intermediate value and finally to near maximum α for the evaluation airplane in order to evaluate the tracking capability of the simulated airplane at high angles of attack. Initially, both airplanes were at an altitude of 9144 m (30 000 ft) at M = 0.8 with the subject airplane about 457 m (1500 ft) directly behind the target and at the same heading as the target. Upon initiation of the run, the target gradually established a banked attitude, slowly increased angle of attack producing a range of normal acceleration from 4g to 7g, decreased altitude, and finally decreased the Mach number to about 0.35. The pilot attempted to track the target as accurately as possible while staying at reasonably close range. At times the pilot would intentionally generate offset and then reacquire the target to study acquisition and settling time.

Maneuvering Tasks

Several general ACM tasks were generated by the evaluation pilot flying the target, and two of these were selected for evaluation. The first task, shown in figure 12, was a series of bank-to-bank maneuvers (or horizontal S's) at steadily increasing angles of attack. These maneuvers enabled the pilot to evaluate the ability to roll rapidly to acquire the target and stabilize while at high-g loadings. A second ACM task of a more general nature was developed in order to represent the complex and vigorous maneuvers encountered during air-to-air combat. As an aid in visualizing this task, the first half of the task is sketched in figure 13(a). The time history of the target motions is shown in figure 13(b). These tasks were considered to be very demanding and required the airplane to have good handling characteristics at high angles of attack in order to achieve good tracking results and avoid loss of control.

Evaluation of Performance

In evaluating the simulated airplane with and without several of the special highangle-of-attack control system features, numerous runs were made in each of the tasks for each configuration considered. The pilot was not normally informed of the control configuration or flight task prior to initiating a test run. This procedure minimized any tendency on the pilot's part to anticipate the problems or to be particularly cautious. In particular, during the performance of the recorded ACM tasks, the pilot tried to optimize his offensive position while obtaining as much tracking time as possible. Sufficient flights were made of the various configurations in the several tasks to insure that the pilot's "learning curve" was reasonably well established before drawing any conclusions on evaluation results. The present configuration required close attention to the learning factor as the pilot was required to adapt to both the side-stick controller and a new control system. On this basis, the performance of the simulated airplane in the tasks selected for discussion in this report is believed to be representative of the high-angle-of-attack handling qualities to be expected of the full-scale airplane (recognizing, however, the limitations imposed by the low Mach number and the low Reynolds number of the input aerodynamic data).

Evaluation of the performance of the several control system components was based on pilot comments, ability of the pilot to execute the task assigned, and analysis of time histories of airplane motions and tracking. In particular, close attention was given to the parameters α , β , ϕ , and ϵ and the pilot control inputs to determine (1) how well the task was executed, (2) the excursions experienced (for instance, in β), and (3) the workload of the pilot. The evaluation considered the effects of the control system features on the airplane handling qualities and tracking, including the aileron-rudder interconnect, the stability-axis yaw damper, both of the aforementioned combined, and the longitudinal angle-of-attack/normal-acceleration limiting system.

SIMULATION RESULTS FOR BASIC CONFIGURATION

In general the stability and control characteristics of the basic airplane (with normal control system) were good for the maneuvering tasks considered, within the angleof-attack range allowed by the longitudinal control system, and caused no problems in the current simulation. These characteristics were studied in several stages, including (1) documentation of the stall, departure, and spin resistance characteristics of the configuration during simple air work, (2) performance of various piloting tasks, and (3) evaluation of the side-stick controller.

Stall, Departure, and Spin Resistance Characteristics

The first portion of the simulator investigation consisted of documenting the stall characteristics of the basic configuration with all elements of the control system. In this phase a particular effort was made to determine maneuvers which might lead to inadvertent loss of control and spin-entry conditions. For all of these simulated flights the C_m curve was modified above $\alpha = 40^{\circ}$ to be conventional (C_{m.2} of fig. 6(b)) in order to avoid deep-stall characteristics which will be discussed later. All flights were started at M = 0.6 and h = 6096 m (20 000 ft). The initial maneuvers flown involved flying the airplane into a turn, increasing angle of attack to the maximum available, and then evaluating controllability. Figure 14 shows a rapid pullup to the maximum angle of attack followed by individual control applications. The horizontal stabilator had to be deflected only a few degrees to perform the initial pullup because of the neutral longitudinal stability of the configuration. Shortly after the airplane reached maximum α (about 27° to 28°), the speed dropped low enough to allow α to drift slightly above 30°, where the longitudinal control system automatically applied full nose-down elevator to stop the overshoot in α . As the airplane stabilized, full rudder was applied and held, followed by full aileron and fully crossed prospin controls. No tendency toward a departure or loss of control was observed.

Shown in figure 15 is a time history of an accelerated stall flown in a windup turn (5g to 6g stall) with full prospin controls applied (aileron with turn and rudder against) as the airplane reached $\alpha = 25^{\circ}$. The prospin controls were held for a prolonged time (about 25 sec) with no loss of control. As airspeed dropped very low (M < 0.2) near t = 25 sec, α began to overshoot to 30° and the pitch control system activated to stop the overshoot. Although α reached 40°, the control system reduced the angle of attack and control of the airplane was not lost.

In order to further evaluate the effectiveness of the control system to prevent inadvertent departures, three extreme maneuvers were flown during stall entry: (1) an inertially coupled entry, (2) an aerodynamically coupled entry, and (3) a vertical entry. Although these maneuvers may not be frequently encountered in air combat, they are possible and should therefore be considered for highly maneuverable fighter airplanes. Typical results obtained for these maneuvers are presented in figures 16 to 18.

The inertially coupled entry, shown starting after t = 50 sec in figure 16, was accomplished by pulling the airplane up rapidly in a windup turn near t = 55 sec and applying full roll control and full rudder when the airplane reached a high pitch rate. This maneuver produced a combination of high angular rates about all three body axes at high angles of attack, and the resultant inertial coupling forced the airplane through $\alpha = 30^{\circ}$, in spite of full nose-down elevator applied by the control system. Sideslip oscillations built up from the unstable Dutch roll, and a spin entry ensued. In the earlier portion of

?,.

the flight prior to t = 50 sec, the figure shows two attempts to depart the configuration by using crossed controls (ailerons with turn and rudder against) and both attempts were unsuccessful. However, as soon as the pilot reversed rudder and deflected it with the roll input (at t = 57.5 sec), the loss of control resulted. It was found that control-input timing was critical in obtaining such a coupled entry and that such entries could not be obtained consistently. Furthermore, no such situation was encountered in the ACM tasks to be discussed later. It must be noted, however, that this maneuver, however difficult to accomplish, is one which could lead to loss of control on the present configuration.

The aerodynamically coupled entry, shown in figure 17, was accomplished by pulling the airplane into a very low-speed, high-angle-of-attack condition in a turn and then reversing the bank angle. The bank-angle change translated angle of attack into sideslip (the low dynamic pressure reduced the effect of the stability-axis yaw damper), and a large increase in β resulted, followed by an increase in α due to aerodynamic pitchup at large sideslips (see fig. 6(c)). However, the resulting motion was easily recoverable for the variation of C_m with α used ($C_{m,2}$ of fig. 6(b)), even though the angle of attack exceeded 60°. A situation such as this could occur in air combat if the pilot attempted a rapid heading change at very low airspeeds.

The vertical stall entry (hammerhead stall), shown in figure 18, was accomplished by putting the airplane into a near vertical climb, allowing the airspeed to drop to near zero, and then pushing the nose over to cause a rapid increase in angle of attack which the pitch control system was unable to stop due to the low dynamic pressure and lack of control effectiveness. Near t = 24 sec, the angle of attack rose to nearly 90° with relatively small sideslip excursions, and the airplane was recovered without difficulty for the variation of C_m with α used ($C_{m,2}$ of fig. 6(b)).

In summary, the three foregoing maneuvers were the only ones discovered that could force the airplane above the angle-of-attack limit dictated by the pitch control system. An essential element in all three maneuvers was the relatively low airspeed which resulted in reduced control effectiveness available for the automatic control system. No attempt has been made to determine the possibility or character of developed spins following the poststall excursions because of lack of reliable aerodynamic representation at angles of attack above about 40° .

Performance in Tasks

An illustration of the performance of the basic airplane in the roll performance task is presented in figure 19 in time-history form. The pilot pulled about 7g in a windup turn and successfully executed a maximum-effort bank-angle reversal near maximum α . Sideslip excursion (adverse β) was small and steady (i.e., well damped), bank-angle control was positive, and a relatively high roll rate was obtained. The pilot commented that the airplane handled well, and the use of rudder pedals was not required to perform the maneuver.

Typical motions of the airplane during the tracking task with the target in a windup turn are shown in figure 20. Also included in the time history are the range between the two airplanes and the pilot tracking error ϵ . In this particular run, the pilot maintained a steady tracking effort with no intentional off-target time. The pilot tracking error was consistently small throughout the task until near the end when the target entered a nearvertical, spiraling-dive evasive maneuver. Sideslip excursions throughout the flight were minimal and control was good. The pilot rated the configuration as good with negligible deficiencies; no rudder inputs were felt to be necessary. The only adverse comments concerned the harmony between the pitch control force gradients and the angle-of-attack/ normal-acceleration limiting schedule; this point will be discussed later.

Illustrations of the performance of the basic airplane in the two general maneuvering tasks, the bank-to-bank task and the general ACM task, are shown in figures 21(a) and 21(b). Figure 21(a) presents the results of a flight on the bank-to-bank tracking task. During the flight, the pilot tracked the target as closely as possible until the target executed a bank-angle change. The pilot then purposely lagged the target in order to study the task of acquiring and stabilizing the pipper (gunsight) on the target after each reversal. As shown by the time history, the pilot was able to accomplish this task with a minimum of control activity and sideslip excursions throughout the angle-of-attack range up to the maximum α available. The pilot rated the airplane from good, with negligible deficiencies, to fair, with minor but annoying deficiencies; the primary problem was one of stabilizing on the target after acquisition, probably due to the force-actuated side-stick controller. At any rate, the pilot had no difficulty in maintaining a good offensive position while keeping the target within a reasonably small angle-off position with no inadvertent departures. Again, the use of rudder pedals was not necessary during the maneuver.

The performance of the airplane in the general ACM task is illustrated in figure 21(b) in time-history form. In spite of the vigorous nature of the maneuvers involved, the pilot was able to maintain a good offensive position while accumulating some tracking time. It is also important to note the relatively small sideslip excursions experienced. The pilot commented that the configuration flew very well and gave him the ability and confidence to pull up and acquire the target almost at will. The pilot felt, in general, that the airplane was well damped and responsive; as shown by the α time history, the task covered the entire angle-of-attack range permitted by the limiting system. However, in certain instances (particularly at relatively high speeds), when the pilot attempted to get the nose up to acquire the target, the normal-acceleration limiting system slowed the rate

|..._

of rotation that could be obtained in pitch. This problem bothered the pilot somewhat (for example, note the α trace at t = 75 to 80 sec and t = 125 to 130 sec).

Overall, the basic airplane performed well in all of the tasks evaluated. No tendency toward loss of control was noted during any of the simulated flights. The pilot commented that the simulated airplane felt very safe and yet essentially unrestricted.

Evaluation of Side-Stick Controller

Since the side-stick controller used in the study configuration is unconventional, the pilot was requested to evaluate the suitability of the controller, to gather any data which might aid in the evaluation of the controller, and to determine the limitations of evaluating such a controller in fixed-base simulation.

The controller used by the pilot was a fixed (minimum displacement), force-actuated, side-stick controller located on the pilot's right-hand side near his right knee, as shown in figure 5. The controller was positioned to suit the primary evaluation pilot as much as possible; however, the position was not optimum (no canting or twisting of the controller was incorporated) and no special armrest was provided to aid the pilot in steadying his forearm. Instead, the pilot was required to rest his elbow on the cockpit seat armrest. This arrangement made it difficult for the pilot to make small precise control inputs. It should be noted that the side stick used on the actual airplane has a forearm rest, cant, and twist. A standard fighter grip was used, and the grip was rigidly mounted to a steel shaft connected to a very stiff force sensor which, in turn, was bolted to the cockpit floor.

It is important to emphasize the fact that the controller grip was rigid and did not move in response to pilot control. The forces exerted by the pilot in the lateral and longitudinal directions normal to the stick vertical axis were sensed by a force-sensing system which, in turn, actuated the control system. (See appendix A for a more detailed description.) Therefore, the only indication to the pilot (other than force) of a control input was the airplane response.

Evaluation of the controller was originally planned to be a natural consequence of the various tasks developed for the pilot, and a certain amount of information was provided by the tasks. However, it was recognized that an important factor would be to document control problems which may exist when the pilot is forced to twist around in his seat in order to view an opponent beside or behind him. Therefore, a special set of runs was made with pilots flying both simulated airplanes in one-on-one ACM, with the secondary airplane pressing the evaluation airplane from the rear.

During the ACM tasks, the evaluation pilot found that he was able to control the airplane satisfactorily with the side-stick controller, but the evaluations uncovered several annoying problems. The first problem noticed by the pilot was a need for a lighter rollforce gradient for right roll than for left roll to account for the fact that a human pilot can normally pull laterally toward himself easier than he can push away. An asymmetric roll force gradient was developed which eliminated this problem as discussed in appendix A. Another recurring problem was that the pilot often encountered the aft force stop without realizing it, although a light mounted on the cockpit instrument panel was illuminated in this case. The same problem occurred to a lesser degree with lateral control. The pilot had no feel (no stick deflection stop) for when he was at maximum command or the amount by which he was exceeding the maximum. To demonstrate this problem as it occurred during one of the ACM tasks, time histories of the pilot force inputs are presented in figure 22. The maximum force values are denoted by dashed lines on the plots. It can be seen that the pilot often exceeded the maximum pitch command force and even attempted to modulate pitch control while exceeding the limit. Such modulation had no effect on the airplane response and therefore could appear to the pilot as improper airplane response. The problem was more evident in pitch than in roll control.

Evaluation of the controller in the one-on-one ACM runs provided additional data on the controller. Initially the pilot made inadvertent roll inputs while twisting and turning in the cockpit to keep his opponent in sight. However, in a relatively short time the pilot was able to adapt to the situation and avoid this problem by concentrating on keeping his arm properly alined with the controller. Major questions remain as to the suitability of such a controller under high-g conditions, such as those associated with ACM. Such conditions could not be simulated in the present fixed-base simulator study because of the lack of g simuation. Another important factor is that, since the stick is mounted on the right side of the cockpit (as opposed to being in the center as a conventional stick), control would be very difficult if the pilot's right arm were injured and he were required to fly left-handed.

As a result of the obvious limitations of the current fixed-base simulation, it should be noted that the side-stick controller could not be fully evaluated under realistic ACM conditions. This evaluation remains to be accomplished during flight tests of the actual airplane.

EFFECTS OF SPECIAL CONTROL SYSTEM FEATURES

Once the performance of the basic airplane was established and the pilot was familiar with the characteristics, emphasis was placed on evaluating how the special control system features contributed to the good characteristics shown by the configuration at high angles of attack. This phase of the study determined the effects of the longitudinal angleof-attack/normal-acceleration limiting system, the aileron-rudder interconnect system, and the stability-axis yaw-damper feature. Also included in this phase was an evaluation of the three different variations of C_m with α in the poststall flight conditions shown in figure 6(b).

Effects of Angle-of-Attack/Normal-Acceleration Limiting System

As mentioned previously, the airplane configuration employs a sophisticated longitudinal control system which includes augmentation for static stability and for controlling the maximum load factor available at a given angle of attack. This latter feature also controls maximum angle of attack available. The angle-of-attack/normal-acceleration limiting system operates on the schedule shown in figure 23. Operationally, the system subtracts larger increments of a_n from the pilot's command ($a_{n,com}$) as the angle of attack is increased. At $\alpha = 27^{\circ}$, the pilot cannot command incremental positive normal accelerations above 1g. This feature tends to limit the maximum angle of attack available. As a backup to this feature, full nose-down elevator is applied by the control system to prevent angle-of-attack overshoot if α exceeds 30°. The system is described in detail in appendix A.

It should be noted that the angle-of-attack/normal-acceleration schedule shown in figure 23 has two distinct slopes above $\alpha = 15^{\circ}$. This feature is incorporated in order to provide an increasingly tight control of α as maximum α is approached.

The angle-of-attack/normal-acceleration limiting system was eliminated except for the overshoot-prevention feature and the pilot was asked to fly the airplane through the roll performance task shown in figure 19. The results of one such flight are presented in figure 24 and show that the airplane almost immediately exceeded the α limit, in spite of the full nose-down elevator above $\alpha = 30^{\circ}$, and the subsequent motion appeared to be an entry into a spin. The pilot recovered the airplane with some difficulty, and the recovery involved an additional inadvertent pitch departure. As previously noted, simulation of spin recovery in the present investigation was of questionable validity. This particular flight was made with the conventional variation of $C_{\rm m}$ with α ($C_{\rm m,2}$) for $\alpha > 40^{\circ}$.

In view of the strong tendency toward high-angle-of-attack excursions without the angle-of-attack/normal-acceleration limiting feature, an effort was made to determine the effect of the three variations of C_m with α shown in figure 6(b) on the recovery motions in order to determine what problems a high-angle-of-attack trim point might cause. The maneuver employed for these evaluations was a simple high-g pullup in a windup turn; no adverse lateral-directional controls were applied. The flights were made without the angle-of-attack/normal-acceleration limiting schedule and without the overshoot-prevention system. The data of figures 25 to 27 illustrate the results obtained and show that all three cases resulted in a poststall gyration or spin-entry situation. In figure 25, the pilot was unable to recover from the strong high-angle-of-attack trim condition with elevator alone and finally reverted to the use of lateral and directional controls

100 110 111

 $\mathbf{22}$

to recover. Figure 26 shows that the pilot had considerably less difficulty with the weak trim point, although he did enter a slow, oscillatory spin. Recovery was effected with forward stick and rolling with the rotation in yaw. Recovery from the high-angle-of-attack excursion with the conventional variation of C_m with α (no trim point at high α) was relatively easy, as shown in figure 27. The pilot recovered with forward stick and some lateral-directional control inputs. The main point shown by the foregoing data is the increasing difficulty in recovering the airplane, without the angle-of-attack/normal-acceleration limiting system as a stronger high-angle-of-attack trim point was introduced. It should be emphasized that preceding results presented for the basic airplane, with the angle-of-attack/normal-acceleration limiting feature, indicate that a pilot would probably not have to contend with any poststall motions on this airplane with the basic control system unless he inadvertently executes one of the three low-speed maneuvers previously described. However, if a trim point exists at extreme angles of attack, it could cause significant delays in recovering from a poststall condition.

A limited effort was made to determine the sensitivity of the angle-of-attack/normal-acceleration limiting system to the particular angle-of-attack/normal-acceleration schedule variations used for the basic schedule. It was noted that any significant increase in the angle of attack for the second breakpoint led to a marginally safe airplane in that high-angle-of-attack excursions were possible in vigorous high-angle-of-attack maneuvers such as the roll performance task. On the other hand, it was noted that, by decreasing the lower schedule gradient and increasing the upper gradient (above $\alpha = 22.5^{\circ}$), the airplane became more responsive in pitch; that is, the pilot could rotate the airplane nose up more rapidly in ACM and could track slightly better. However, it was also obvious that modifications to the stick force characteristics before a satisfactory pitch response could be obtained. This degree of detail was beyond the scope of the current investigation.

Effects of Aileron-Rudder Interconnect and Stability-Axis Yaw Damper

Additional flights were made to establish the benefits the simulated airplane gained from the special lateral-directional control system features, including the aileron-rudder interconnect (ARI) and the stability-axis yaw damper. (These flights were made with the angle-of-attack/normal-acceleration limiter operative.) The ARI gain was scheduled with angle of attack (see appendix A) such that the amount of rudder commanded by the lateral stick increased with increasing angle of attack. The stability-axis yaw damper was implemented by feeding the directional control channel an approximation ($\mathbf{r} - p\alpha$) of sideslip rate $\dot{\beta}$. (See appendix A.) The system tends to make the airplane roll about the stability axis, thereby minimizing β . Both control features require angle-of-attack information.

È.

When the ARI system was disengaged from the lateral-directional control system, the airplane could be forced into a spin-entry condition by using crossed controls as shown in figure 28. As previously discussed, the basic airplane could not be departed by use of crossed controls with the ARI active, as shown in figure 14(b). Figure 28, however, shows a case in which the airplane, with the ARI system disengaged, overshot the $\alpha = 30^{\circ}$ boundary. The pitch control system attempted to stop the α buildup, and at this point, a pilot might have recovered with neutral lateral controls, but crossed controls were maintained and a spin entry ensued. This result shows that the ARI system is an important factor in the spin resistance of the airplane. The results of reference 4 also showed a similar effect of an ARI system.

An important aspect of fighter airplane handling qualities is the ability to maneuver safely and effectively at high angles of attack. This ability requires good roll performance throughout the operational angle-of-attack range. Both the ARI and the stability-axis yaw damper contributed significant improvements to the roll performance of the configuration at high angles of attack. The roll performance of the airplane was evaluated by documenting the maximum roll rate obtained, with full roll control, when the pilot attempted to reverse the airplane bank angle at a selected angle of attack while in an accelerated windup turn. This type of maneuver is typical of ACM and similar to the roll performance task. The results obtained on the simulated airplane are summarized in figure 29 which presents results for the basic airplane, the airplane without both features, and the airplane without each feature individually. As pointed out earlier, the roll performance of the basic airplane was excellent throughout the available angle-of-attack range. When both the ARI and the stability-axis damper were removed from the control system, the simulated airplane experienced (1) roll reversals above $\alpha = 25^{\circ}$, (2) a significant reduction in maximum roll rate available because of adverse yaw, and (3) markedly reduced lateraldirectional damping. Figure 30 illustrates the performance of this configuration in the roll performance task and indicates the degraded handling qualities. When only the ARI was removed, the airplane exhibited less reduction in high-angle-of-attack roll rate and less adverse yaw; however, it showed relatively good damping at high α as evidenced by the β trace shown in figure 31. When only the stability-axis yaw damper was removed, the airplane maximum roll rate and adverse yaw were comparable to the basic airplane; however, the data of figure 32 show the marked reduction in high-angle-of-attack damping caused by removal of this feature. In summary, both features aided in reducing the adverse yaw and improving roll performance; the ARI provided the biggest single improvement in roll rate (by reducing adverse yaw), while the stability-axis damper provided primarily good lateral-directional damping at high α which resulted in reduced adverse yaw and improved roll performance. Both features would be expected to significantly reduce the pilot workload and increase confidence in the ACM environment.

As pointed out earlier, the tracking task was used primarily to evaluate the pilot's ability to track with the airplane at high angles of attack; this task therefore serves to highlight any problems evident in making precise control inputs. The simulated airplane was evaluated during the tracking task without both the ARI and the stability-axis yaw damper and without each feature individually. The results for each flight are presented in time-history form in figure 33. The solid line indicates the performance of the basic airplane, while the symbols represent the modified airplane. The basic airplane trace is the same flight for all comparisons and includes intentional inputs by the pilot to generate offset on the target and then reacquire it. When both features were removed from the control system, the overall tracking was noticeably degraded, as shown in figure 33(a). In this flight, the pilot did not intentionally generate any offset with the modified airplane. The β variations show that the pilot had more difficulty with β excursions and β oscillations during the task with the two control sytem features removed. These problems were reflected in bank-angle control problems and increased control activity. The pilot commented that he had considerable lateral-directional difficulty resulting in poor tracking at high angles of attack. The pilot stated that the configuration with neither of the subject control system features had very objectionable, but tolerable, deficiencies and that adequate performance required considerable pilot compensation.

When only the ARI was removed, considerable improvement was evident, as illustrated in figure 33(b). In this case the modified airplane still experienced larger β excursions than did the basic airplane, but the β oscillations evident in figure 33(a) were reduced, indicating improved damping due to the stability-axis yaw damper. Bank-angle problems were still evident and higher control activity in roll was present. Tracking was comparable with results for the basic airplane except for short periods at the beginning and the end of the flight. The pilot commented that the absence of the ARI made the airplane feel heavier in roll (apparent higher damping) and that it was difficult to make small corrections. The pilot also commented that the airplane without the ARI had minor, but annoying, deficiencies which required improvement.

A flight with only the stability-axis yaw damper removed, presented in figure 33(c), showed only small excursions in β , but β was considerably more oscillatory above $\alpha = 20^{\circ}$ with the damper removed, indicative of the loss of the damping provided by this feature. The tracking error ϵ is comparable with that of the basic airplane except for problems occurring near the end of the flight at higher angles of attack. The pilot sensed the loss in damping and commented that the airplane felt lighter in roll. This configuration was rated by the pilot to be about as difficult to handle as the configuration without the ARI, possibly a little more difficult due to the reduced damping. In general, the effects of the two control system features, as shown by the tracking task, correlate well with those effects shown in the roll performance task and in the linearized dynamic stability

analysis. That is, the ARI provides reduced adverse yaw and better roll response while the stability-axis yaw damper provides improved lateral-directional damping.

In order to further evaluate the effects of these two special control system features, the general ACM task described earlier was performed with and without the control features. Evaluation in such a task gives more insight into the effects of a given control system since the pilot has less time to compensate for stability and control deficiencies because the task requirements change rapidly. In general, the results obtained in this task further substantiated those obtained with the tasks previously described. In particular, removal of both systems (fig. 34(a)) resulted in a configuration which was prone to large sideslip excursions and oscillations. The tracking accuracy obtained was noticeably reduced as a result of these problems. The pilot commented that he was much less confident in the modified airplane since it exhibited general looseness and significant adverse yawing, which seemed to indicate an incipient nose slice, and was ineffective as a tracking platform. Attempting to maintain a good offensive position required considerably more attention than with the basic configuration. It is interesting to note here that the pilot rated this modified configuration lower in the ACM task than in the windup turn tracking as more problems became evident under the vigorous maneuvering conditions.

When only the ARI was removed, the modified configuration performed more like the basic airplane as shown in figure 34(b). However, the pilot was aware of β excursions and attempted to use his rudder pedals to correct them. Overall, the required control activity was increased to compensate for the adverse yaw, and the pilot managed to track about as well as with the basic configuration. Since the pilot did not notice the increased control activity as much in this ACM task as in the tracking task, he rated this modified configuration about the same as the basic airplane. It should be noted in this regard that the low-speed data for the present configuration indicate much less adverse yaw at high angles of attack than is the case for most current fighter airplanes.

When the stability-axis yaw damper was removed from the control system, the pilot's comments were much more unfavorable than when the ARI was removed. The results of a flight in this condition are presented in figure 34(c) and show significant oscillations in β , which are indicative of reduced damping. The reduced lateral-directional damping caused by the absence of the stability-axis yaw damper caused the pilot much more difficulty in this task than in the mild, windup turn tracking task. As a result, even though the pilot's tracking was comparable with that obtained with the basic airplane, the pilot rated this modified configuration the same as the airplane with neither special feature. Apparently, a pilot can compensate for a small amount of adverse yaw as long as lateral-directional damping is good, but he cannot adequately provide compensation for low damping in a rapidly changing maneuvering task. This result highlights the importance of evaluating airplanes not only in simple tracking tasks where time for compensation.

tion is available but also in vigorous, rapidly changing tasks where there is little time for pilot compensation of the airplane deficiencies.

INTERPRETATION OF RESULTS

Direct application of the present study results to the full-scale airplane is limited because of several study limitations. The present study was based on aerodynamic characteristics measured at low Mach number (test $M \cong 0.1$) and low Reynolds number $(N_{Re} = 0.8 \times 10^6)$, and no adjustments were made for higher Reynolds number or Mach number. Past experience has established that variations in Mach number can have marked effects on aerodynamic stability and control characteristics for fighter airplanes. For example, results of reference 4 had to be modified for application to the full-scale airplane as flight tests indicated that the angle of attack for onset of adverse yaw due to differential tail deflection decreased with increasing Mach number above M = 0.65. It is therefore important that such effects as these be considered when systems are designed for actual airplanes. Furthermore, caution should be exercised in interpreting the simulation results obtained at angles of attack over 40° since some uncertainty exists as to the actual variation of C_m with α in the high-angle-of-attack regime for this configuration. However, relatively high confidence exists in the C_m data used below $\alpha = 40^{\circ}$. Finally, as has been noted earlier, the suitability of the side-stick controller used by this configuration could not be fully evaluated in the current simulation due to a lack of proper simulation of g forces in the cockpit. These limitations should be kept in mind in applying the following general study results.

The results of the present study have indicated that the control system for this prototype configuration causes the configuration to be very resistant to departure and spinning, as compared with current fighter airplanes. The use of such control systems allows the pilot to utilize the maximum maneuverability of an airplane without undue fear of control-induced departures and inadvertent spins; such systems, however, do not make the airplane spinproof. The implementation of these concepts on the present configuration and the airplane of reference 4 shows that the implementation of such control concepts is feasible within current control technology. The performance demonstrated in the simulation of this configuration is indicative of the fact that very good overall maneuverability and handling qualities for fighter airplanes can result from proper attention to high-angle-ofattack characteristics in airframe and control system design.

SUMMARY OF RESULTS

A piloted, fixed-base simulator investigation using a lightweight fighter prototype configuration has been conducted to evaluate the effectiveness of special automatic control system features designed to enhance high-angle-of-attack maneuverability and handling qualities of fighter airplanes. The study used aerodynamic data based on tests of a 0.15-scale model at low Reynolds number (0.8×10^6) and low Mach number (approximately 0.1); therefore, the investigation cannot be considered a precise or complete representation of the full-scale airplane. The study produced the following results:

1. The basic configuration (with special control system features for high angle of attack) was highly maneuverable and was resistant to inadvertent departures or loss of control at high angles of attack and low values of Mach number.

2. The angle-of-attack/normal-acceleration limiting feature of the longitudinal control system was well tailored to permit maximum advantage to be taken of the good lateral-directional stability and control characteristics.

3. The aileron-rudder interconnect was found to significantly reduce adverse yaw at high angles of attack, which provided improved roll performance.

4. The stability-axis yaw damper also provided reduced adverse yaw and improved roll performance and, in addition, provided improvement in lateral-directional damping, which was quite apparent to the pilot at high angles of attack.

5. Whereas the absence of the stability-axis yaw damper proved to be only a nuisance to the pilot in the steady windup turn tracking task, its absence proved to be a severe hand-icap in the more vigorous and complex air-combat maneuvering tasks.

6. The basic configuration (with all special control features active) could not be forced to depart with conventional prospin controls (crossed controls), even in a highly accelerated stall entry.

7. The only maneuvers discovered which could overpower the angle-of-attack limiting system were low-speed maneuvers wherein the dynamic pressure was so low that control power was inadequate; these included (1) inertially coupled entries at high angles of attack, (2) aerodynamically coupled entries at high angles of attack and low speed, and (3) the classic vertical, or hammerhead, stall.

8. Use of an automatic control system designed to give good high-angle-of-attack handling characteristics and resistance to departure and spinning seemed to greatly improve the combat effectiveness of the simulated airplane.

Langley Research Center National Aeronautics and Space Administration Hampton, Va. 23665 March 11, 1976

APPENDIX A

DESCRIPTION OF CONTROL SYSTEM

Longitudinal

A block diagram of the longitudinal control system used in the simulation is presented in figure 35(a). The implementation was a fly-by-wire, command augmentation system whereby the pilot commanded normal acceleration through a minimum deflection, force-sensing side-stick controller. Washed-out pitch rate and filtered normal acceleration were fed back to give the desired response. A forward loop integration was used so that the steady-state acceleration response matched the commanded acceleration. The airplane was balanced to minimize trim drag, with the effect that it had essentially neutral static longitudinal stability at subsonic speeds; the desired static stability was provided artificially by the control system by means of angle-of-attack feedback.

The longitudinal control system also incorporated an angle-of-attack limiting system which functioned by using an α feedback to modify the pilot-commanded normal acceleration. The angle-of-attack feedback reduced the commanded normal-acceleration limit by 0.32g per degree between $\alpha = 15^{\circ}$ and 22.5°, and by 1.01g per degree above 22.5°. This feature resulted in an angle-of-attack limit in 1g flight of approximately 27°. The maximum allowable positive commanded normal acceleration is shown in figure 23. In addition, when α exceeded 30°, the system applied full nose-down control independent of pilot or feedback inputs. The reason for this feature was to inhibit the airplane from exceeding $\alpha = 30^{\circ}$ since the angle-of-attack sensor was limited to this value and, hence, no vital α information would be available to the control system at higher angles of attack. The stabilator actuator was modeled as a first-order lag of 0.05 sec with a rate limit of 60 deg/sec. The surface deflection limit was $\pm 25^{\circ}$.

The mathematical model used to simulate the activation of the leading-edge flap system is described in figure 35(b). The commanded flap deflection was scheduled with Mach number and angle of attack. Pitch rate was used to provide lead information. A schedule of the steady-state flap deflection is also indicated. The flap deflection varied linearly with α above a prescribed threshold value α_0 . The flap actuator was rate and position limited.

Lateral

The lateral control system is shown by the block diagram given in figure 35(c). The system incorporated a roll-rate command feature whereby the pilot commanded roll rates up to a maximum of 220 deg/sec through the force-sensing control stick. The schedule of roll-rate command as a function of force input was made asymmetric so that less force

APPENDIX A

was required to achieve a given roll rate to the right than to the left. Both the differential tail δ_D and the ailerons δ_a were deflected in response to the pilot's commands. The surface actuators were modeled as 0.05-sec first-order lags with rate limits of 60 deg/sec for the differential tail and 56 deg/sec for the ailerons. The surface deflection limits were $\pm 5^{\circ}$ and $\pm 20^{\circ}$ for the differential tail and the ailerons, respectively.

Directional

A block diagram of the directional control system used in the simulation is presented in figure 35(d). The pilot rudder input was computed directly from pedal force and was limited to $\pm 30^{\circ}$. Stability augmentation consisted of $r - p\alpha$ (r_{stab}) and a_Y feedbacks. The stability-axis yaw damper provided increased lateral-directional damping in addition to reducing sideslip during rolling maneuvers at high angles of attack. The lateral acceleration feedback provided increased directional stability, primarily at transonic and supersonic speeds, and therefore had little effect at subsonic speeds in the present investigation. The directional control system also incorporated an aileron-rudder interconnect (ARI) for improved coordination and roll performance. The ARI gain was scheduled as a linear function of angle of attack with a slope of 0.0375 per degree. Neither the stability augmentation system nor the ARI was authority limited. The rudder power actuator was modeled as a 0.05-sec first-order lag with a rate limit of 120 deg/sec. The total rudder travel was limited to $\pm 30^{\circ}$.

APPENDIX B

DESCRIPTION OF EQUATIONS AND DATA EMPLOYED IN SIMULATION SETUP

Equations of Motion

The equations used to describe the motions of the airplanes were nonlinear, sixdegree-of-freedom, rigid-body equations referenced to a body-fixed axis system shown in figure 1 and are given as follows:

Forces:

$$\dot{\mathbf{u}} = \mathbf{r}\mathbf{v} - \mathbf{q}\mathbf{w} - \mathbf{g}\,\sin\theta + \frac{\overline{\mathbf{q}}\mathbf{S}}{\mathbf{m}}\,\mathbf{C}_{\mathbf{X},\mathbf{t}} + \frac{\mathbf{T}}{\mathbf{m}}$$
$$\dot{\mathbf{v}} = \mathbf{p}\mathbf{w} - \mathbf{r}\mathbf{u} + \mathbf{g}\,\cos\theta\,\sin\phi + \frac{\overline{\mathbf{q}}\mathbf{S}}{\mathbf{m}}\,\mathbf{C}_{\mathbf{Y},\mathbf{t}}$$

$$\dot{\mathbf{w}} = \mathbf{q}\mathbf{u} - \mathbf{p}\mathbf{v} + \mathbf{g}\cos\theta\cos\phi + \frac{\overline{\mathbf{q}}\mathbf{S}}{\mathbf{m}}\mathbf{C}_{\mathbf{Z},\mathbf{t}}$$

Moments:

$$\begin{split} \dot{p} &= \frac{I_Y - I_Z}{I_X} qr + \frac{I_{XZ}}{I_X} (\dot{r} + pq) + \frac{\overline{q}Sb}{I_X} C_{l,t} \\ \dot{q} &= \frac{I_Z - I_X}{I_Y} pr + \frac{I_{XZ}}{I_Y} (r^2 - p^2) + \frac{\overline{q}S\overline{c}}{I_Y} C_{m,t} \\ \dot{r} &= \frac{I_X - I_Y}{I_Z} pq + \frac{I_{XZ}}{I_Z} (\dot{p} - qr) + \frac{\overline{q}Sb}{I_Z} C_{n,t} \end{split}$$

where the total aerodynamic coefficients $C_{X,t}$, $C_{Z,t}$, $C_{m,t}$, $C_{Y,t}$, $C_{n,t}$, and $C_{l,t}$ are defined in the next section. Euler angles were computed by using quaternions to allow continuity of attitude motions. Auxiliary equations included

$$\alpha = \tan^{-1}\left(\frac{\mathbf{w}}{\mathbf{u}}\right)$$

31

APPENDIX B

$$\beta = \sin^{-1} \left(\frac{v}{v}\right)$$
$$V = \sqrt{u^2 + v^2 + w^2}$$
$$a_n = \frac{qu - pv + g \cos \theta \cos \phi - \dot{w}}{g}$$
$$a_Y = \frac{-pw + ru - g \cos \theta \sin \phi + \dot{v}}{g}$$

Aerodynamic Data

The aerodynamic data used in the simulation were derived from static and dynamic (forced oscillation) wind-tunnel force tests conducted with a 0.15-scale model of the present configuration in the Langley full-scale tunnel at low Reynolds number ($N_{Re} = 0.8 \times 10^6$) and low Mach number ($M \approx 0.1$). Special tests were made to measure such effects as the effects of horizontal tail position on pitch control power and on lateral-directional stability. The static aerodynamics were input in tabular form as functions of both angle of attack and sideslip over the ranges $-10^{\circ} \leq \alpha \leq 90^{\circ}$ and $-40^{\circ} \leq \beta \leq 40^{\circ}$.

The dynamic data were input in tabular form for $\beta = 0^{\circ}$ over the same α range. All aerodynamic coefficients are for $\delta_{lef} = 25^{\circ}$ unless otherwise indicated. Significant nonlinearities observed in the measured data were included. Total coefficient equations were used to sum the various aerodynamic contributions to a given force or moment coefficient as follows:

For the X-axis force coefficient

$$\begin{split} \mathbf{C}_{\mathbf{X},\mathbf{t}} &= \mathbf{C}_{\mathbf{X}}(\alpha,\beta) + \Delta \mathbf{C}_{\mathbf{X},\mathbf{sb}}(\alpha) \left(\frac{\delta_{\mathbf{sb}}}{60} \right) + \Delta \mathbf{C}_{\mathbf{X},\mathbf{lef}}(\alpha,\beta) \left(\mathbf{1} - \frac{\delta_{\mathbf{lef}}}{25} \right) \\ &+ \frac{\overline{\mathbf{cq}}}{2\mathbf{V}} \left[\mathbf{C}_{\mathbf{Xq}}(\alpha) + \Delta \mathbf{C}_{\mathbf{Xq},\mathbf{lef}}(\alpha) \left(\mathbf{1} - \frac{\delta_{\mathbf{lef}}}{25} \right) \right] + \Delta \mathbf{C}_{\mathbf{X},\delta\mathbf{h}} \end{split}$$

where

$$\Delta C_{X,\delta_{h}} = \Delta C_{X,\delta_{h}} = -10^{\circ}(\alpha,\beta) + \left[\Delta C_{X,\delta_{h}} = -25^{\circ}(\alpha,\beta) - \Delta C_{X,\delta_{h}} = -10^{\circ}(\alpha,\beta)\right] \left(\frac{\delta_{h} + 10^{\circ}}{-15^{\circ}}\right) + \left[(-25^{\circ} \le \delta_{h} < -10^{\circ})\right] \left(\frac{\delta_{h} + 10^{\circ}}{-15^{\circ}}\right)$$

$$\Delta C_{X,\delta h} = \Delta C_{X,\delta h} = -100(\alpha,\beta) \left(\frac{\delta_h}{-10}\right) \qquad (-10^{\circ} \leq \delta_h < 0^{\circ})$$

$$\Delta C_{\mathbf{X},\delta_{\mathbf{h}}} = \Delta C_{\mathbf{X},\delta_{\mathbf{h}}} = 10^{\circ} (\alpha,\beta) \left(\frac{\delta_{\mathbf{h}}}{10} \right) \qquad (0^{\circ} \leq \delta_{\mathbf{h}} < 10^{\circ})$$

and

$$\Delta C_{X,\delta_{h}} = \Delta C_{X,\delta_{h}=100}(\alpha,\beta) + \left[\Delta C_{X,\delta_{h}=250}(\alpha,\beta) - \Delta C_{X,\delta_{h}=100}(\alpha,\beta)\right] \left(\frac{\delta_{h} - 10}{15}\right)$$

$$(10^{\circ} \leq \delta_{h} \leq 25^{\circ})$$

For the Z-axis force coefficient

$$\begin{split} \mathbf{C}_{\mathbf{Z},\mathbf{t}} &= \mathbf{C}_{\mathbf{Z}}(\alpha,\beta) + \Delta \mathbf{C}_{\mathbf{Z},\delta_{\mathbf{h}}} + \Delta \mathbf{C}_{\mathbf{Z},\mathbf{sb}}(\alpha) \left(\frac{\delta_{\mathbf{sb}}}{60} \right) + \Delta \mathbf{C}_{\mathbf{Z},\mathbf{lef}}(\alpha,\beta) \left(1 - \frac{\delta_{\mathbf{lef}}}{25} \right) \\ &+ \frac{\overline{\mathbf{cq}}}{2\overline{\mathbf{V}}} \left[\mathbf{C}_{\mathbf{Zq}}(\alpha) + \Delta \mathbf{C}_{\mathbf{Zq},\mathbf{lef}}(\alpha) \left(1 - \frac{\delta_{\mathbf{lef}}}{25} \right) \right] \end{split}$$

where

$$\Delta C_{Z,\delta_{h}} = \Delta C_{Z,\delta_{h}=-10} \circ (\alpha,\beta) + \left[\Delta C_{Z,\delta_{h}=-25} \circ (\alpha,\beta) - \Delta C_{Z,\delta_{h}=-10} \circ (\alpha,\beta) \right] \left(\frac{\delta_{h}+10}{-15} \right)$$
$$(-25^{\circ} \leq \delta_{h} < -10^{\circ})$$

$$\Delta C_{Z,\delta_h} = \Delta C_{Z,\delta_h} = -10^{\circ} (\alpha,\beta) \left(\frac{\delta_h}{-10} \right) \qquad (-10^{\circ} \le \delta_h < 0^{\circ})$$

$$\Delta C_{Z,\delta_h} = \Delta C_{Z,\delta_h} = 100(\alpha,\beta) \left(\frac{\delta_h}{10}\right) \qquad (0^\circ \leq \delta_h < 10^\circ)$$

and

$$\Delta C_{Z,\delta_{h}} = \Delta C_{Z,\delta_{h}=10} \circ (\alpha,\beta) + \left[\Delta C_{Z,\delta_{h}=25} \circ (\alpha,\beta) - \Delta C_{Z,\delta_{h}=10} \circ (\alpha,\beta) \right] \left(\frac{\delta_{h} - 10}{15} \right)$$
$$(10^{\circ} \le \delta_{h} \le 25^{\circ})$$

33

APPENDIX B

For the pitching-moment coefficient ($C_m(\alpha,\beta)$ selected to be C_m , $C_{m,1}$, or $C_{m,2}$ as desired)

$$\begin{split} \mathbf{C}_{\mathrm{m,t}} &= \mathbf{C}_{\mathrm{m}}(\alpha,\beta) + \mathbf{C}_{\mathrm{Z,t}}(\mathbf{x}_{\mathrm{cg,ref}} - \mathbf{x}_{\mathrm{cg}}) + \Delta \mathbf{C}_{\mathrm{m,\delta_{h}}} + \Delta \mathbf{C}_{\mathrm{m,lef}}(\alpha,\beta) \left(1 - \frac{\delta_{\mathrm{lef}}}{25}\right) \\ &+ \frac{\overline{\mathbf{cq}}}{2V} \left[\mathbf{C}_{\mathrm{mq}}(\alpha) + \Delta \mathbf{C}_{\mathrm{mq,lef}}(\alpha) \left(1 - \frac{\delta_{\mathrm{lef}}}{25}\right) \right] \end{split}$$

where

$$\Delta C_{m,\delta_{h}} = \Delta C_{m,\delta_{h}=-10} o(\alpha,\beta) + \left[\Delta C_{m,\delta_{h}=-25} o(\alpha,\beta) - \Delta C_{m,\delta_{h}=-10} o(\alpha,\beta) \right] \left(\frac{\delta_{h}+10}{-15} \right) (-25^{\circ} \le \delta_{h} < 10^{\circ})$$

$$\Delta C_{m,\delta_h} = \Delta C_{m,\delta_h} = -100(\alpha,\beta) \left(\frac{\delta_h}{-10} \right) \qquad (-10^\circ \leq \delta_h < 0^\circ)$$

$$\Delta C_{m,\delta_h} = \Delta C_{m,\delta_h} = 10^{\circ} (\alpha,\beta) \left(\frac{\delta_h}{10} \right) \qquad (0^{\circ} \le \delta_h < 10^{\circ})$$

and

$$\Delta C_{m,\delta_{h}} = \Delta C_{m,\delta_{h}=10} o(\alpha,\beta) + \left[\Delta C_{m,\delta_{h}=25} o(\alpha,\beta) - \Delta C_{m,\delta_{h}=10} o(\alpha,\beta) \right] \left(\frac{\delta_{h} - 10}{15} \right)$$
$$(10^{\circ} \le \delta_{h} \le 25^{\circ})$$

For the Y-axis force coefficient

$$\begin{split} \mathbf{C}_{\mathbf{Y},\mathbf{t}} &= \mathbf{C}_{\mathbf{Y}}(\alpha,\beta) + \left[\Delta \mathbf{C}_{\mathbf{Y},\delta_{a}=20} \mathbf{o}(\alpha,\beta) + \Delta \mathbf{C}_{\mathbf{Y},\delta_{a}=20} \mathbf{o}, \operatorname{lef}(\alpha,\beta) \left(\mathbf{1} - \frac{\delta_{1} \operatorname{ef}}{25} \right) \right] \left(\frac{\delta_{a}}{20} \right) \\ &+ \Delta \mathbf{C}_{\mathbf{Y},\delta_{D}=50}(\alpha,\beta) \left(\frac{\delta_{D}}{5} \right) + \Delta \mathbf{C}_{\mathbf{Y},\delta_{T}=300}(\alpha,\beta) \left(\frac{\delta_{T}}{30} \right) + \frac{\mathrm{b}}{2\mathrm{V}} \left\{ \left[\mathbf{C}_{\mathbf{Y}_{\mathbf{r}}}(\alpha) \right] \right\} \\ &+ \Delta \mathbf{C}_{\mathbf{Y}_{\mathbf{r},1}} \left[\mathbf{c}_{\mathbf{Y}_{\mathbf{r}}}(\alpha) \left(\mathbf{1} - \frac{\delta_{1} \operatorname{ef}}{25} \right) \right] \mathbf{r} + \left[\mathbf{C}_{\mathbf{Y}_{\mathbf{p}}}(\alpha) + \Delta \mathbf{C}_{\mathbf{Y}_{\mathbf{p},1}} \left[\alpha\right) \left(\mathbf{1} - \frac{\delta_{1} \operatorname{ef}}{25} \right) \right] \mathbf{p} \right\} \end{split}$$

APPENDIX B

For the yawing-moment coefficient

$$\begin{split} \mathbf{C}_{n,t} &= \mathbf{C}_{n}(\alpha,\beta) - \mathbf{C}_{\mathbf{Y},t}(\mathbf{x}_{cg,ref} - \mathbf{x}_{cg})\left(\frac{\overline{\mathbf{c}}}{\mathbf{b}}\right) + \Delta \mathbf{C}_{n,lef}(\alpha,\beta)\left(1 - \frac{\delta_{lef}}{25}\right) + \left[\Delta \mathbf{C}_{n,\delta_{a}=20^{\circ}(\alpha,\beta)} + \Delta \mathbf{C}_{n,\delta_{a}=20^{\circ}(\alpha,\beta)}\left(\frac{\delta_{r}}{25}\right)\right] \\ &+ \Delta \mathbf{C}_{n,\delta_{a}=20^{\circ},lef(\alpha,\beta)\left(1 - \frac{\delta_{lef}}{25}\right)\right] \frac{\delta_{a}}{20} + \Delta \mathbf{C}_{n,\delta_{D}=5^{\circ}(\alpha,\beta)}\left(\frac{\delta_{D}}{5}\right) + \Delta \mathbf{C}_{n,\delta_{r}=30^{\circ}(\alpha,\beta)}\left(\frac{\delta_{r}}{30}\right) \\ &+ \Delta \mathbf{C}_{n,\delta_{h}} + \frac{b}{2V}\left\langle \left[\mathbf{C}_{n_{r}}(\alpha) + \mathbf{C}_{n_{r},lef}(\alpha)\left(1 - \frac{\delta_{lef}}{25}\right)\right]\mathbf{r} + \left[\mathbf{C}_{n_{p}}(\alpha) + \Delta \mathbf{C}_{n_{p},lef}(\alpha)\left(1 - \frac{\delta_{lef}}{25}\right)\right]\mathbf{p}\right\rangle \end{split}$$

where

$$\Delta C_{n,\delta_{h}} = \Delta C_{n,\delta_{h}} = -25^{O}(\alpha,\beta) \left(\frac{\delta_{h}}{-25}\right) \qquad (-25^{O} \le \delta_{h} < 0^{O})$$

and

$$\Delta C_{n,\delta_{h}} = \Delta C_{n,\delta_{h}} = 25^{o(\alpha,\beta)} \left(\frac{\delta_{h}}{25} \right)$$
 (0° ≤ δ_{h} ≤ 25°)

For the rolling-moment coefficient

$$\begin{split} \mathbf{C}_{l,t} &= \mathbf{C}_{l}(\alpha,\beta) + \Delta \mathbf{C}_{l,\mathrm{lef}}(\alpha,\beta) \left(1 - \frac{\delta_{\mathrm{lef}}}{25} \right) + \Delta \mathbf{C}_{l,\delta_{\mathrm{h}}} + \left[\Delta \mathbf{C}_{l,\delta_{\mathrm{a}}} = 20^{\mathrm{o}(\alpha,\beta)} \right. \\ &+ \Delta \mathbf{C}_{l,\delta_{\mathrm{a}}} = 20^{\mathrm{o},\mathrm{lef}}(\alpha,\beta) \left(1 - \frac{\delta_{\mathrm{lef}}}{25} \right) \right] \frac{\delta_{\mathrm{a}}}{20} + \Delta \mathbf{C}_{l,\delta_{\mathrm{D}}} = 5^{\mathrm{o}(\alpha,\beta)} \left(\frac{\delta_{\mathrm{D}}}{5} \right) + \Delta \mathbf{C}_{l,\delta_{\mathrm{r}}} = 30^{\mathrm{o}(\alpha,\beta)} \left(\frac{\delta_{\mathrm{r}}}{30} \right) \\ &+ \frac{\mathrm{b}}{2\mathrm{V}} \left\langle \left[\mathbf{C}_{l_{\mathrm{r}}}(\alpha) + \Delta \mathbf{C}_{l_{\mathrm{r},\mathrm{lef}}}(\alpha) \left(1 - \frac{\delta_{\mathrm{lef}}}{25} \right) \right] \mathbf{r} + \left[\mathbf{C}_{l_{\mathrm{p}}}(\alpha) + \Delta \mathbf{C}_{l_{\mathrm{p},\mathrm{lef}}}(\alpha) \left(1 - \frac{\delta_{\mathrm{lef}}}{25} \right) \right] \mathbf{p} \right\rangle \end{split}$$

where

$$\Delta C_{l,\delta_{h}} = \Delta C_{l,\delta_{h}} = -250(\alpha,\beta) \left(\frac{\delta_{h}}{-25}\right) \qquad (-25^{\circ} \leq \delta_{h} < 0^{\circ})$$

35

APPENDIX B

and

$$\Delta C_{l,\delta_{h}} = \Delta C_{l,\delta_{h}} = 250(\alpha,\beta) \left(\frac{\delta_{h}}{25} \right) \qquad (00 \le \delta_{h} \le 250)$$

The aerodynamic coefficients contained in the preceding coefficient equations are presented in tables II to VII as functions of the indicated independent variables. The aerodynamic moment coefficients are referenced to a center-of-gravity location of $0.34\overline{c}$ and were corrected to the desired flight center-of-gravity position ($0.35\overline{c}$) in the coefficient equations.

Engine Simulation

The configuration was assumed to be powered by an afterburning turbofan jet engine. The thrust response to throttle inputs was computed by using the mathematical model indicated in figure 36(a). The response was modeled with a first-order lag which varied as shown in figure 36(c). The throttle command gearing is shown in figure 36(b). Presented in table VIII are thrust values for idle, military, and maximum thrust levels. The response of the engine to a step throttle command at t = 0 is shown in figure 36(d); the command was removed at t = 6 sec.

Buffet Characteristics

Aerodynamic buffeting of the airframe at high angles of attack was simulated by shaking the cockpit with a hydraulic mechanism. The buffet intensity and frequency content were controlled by the computer, with the buffet amplitude varying with angle of attack as shown in figure 37. The frequency content was controlled to represent the relative buffet amplitude contributions of the three primary structural modes of the airframe. The buffet levels employed represent moderate buffet and were derived from wind-tunnel tests of a 1/9-scale wind-tunnel model especially instrumented for this purpose. Buffet onset occurred near $\alpha = 15^{\circ}$, and the level of buffet in creased fairly linearly thereafter with increasing angle of attack. The relatively high angle of attack for buffet onset made buffet onset a good angle-of-attack cue for the pilot.

Simulation of Blackout

Pilot blackout or "grayout" under sustained high values of normal acceleration was simulated by decreasing the brightness of the projected scene and the cockpit instruments as a function of the cumulative time spent at high load factors. At the same time, dimming of the target image was delayed relative to the scene in order to partially simulate tunnel vision for steady tracking maneuvers. This simulation of blackout provided a cue, in addi-

APPENDIX B

tion to the inflatable g-suit, of the extent of operation at high normal acceleration, and it penalized the pilot who flew at unrealistically high values of normal acceleration. The blackout representation assumed that a pilot will experience grayout if exposed to a value of normal acceleration greater than 5g and will tend to recover when returning to below this level. The algorithm used a direct relation between the logarithm of the load factor a_n and the logarithm of the time to blackout; the simulation used 300 sec to blackout at 5g and 10 sec to blackout at 9g, with simulated tunnel vision during the interim period.

REFERENCES

- Chen, Robert T. N.; Newell, Fred D.; and Schelhorn, Arno E.: Development and Evalution of an Automatic Departure Prevention System and Stall Inhibitor for Fighter Aircraft. AFFDL-TR-73-29, U.S. Air Force, Apr. 1973.
- Lee, Robert E., Jr.; Sharp, Patrick S.; Winters, Charles P.; and Olsen, Richard W.: Evaluation of the F-111 Stall Inhibitor System/Landing Configuration Warning System/Adverse Yaw Compensation Modifications. FTC-TR-73-27, U.S. Air Force, July 1973. (Available from DDC as AD 913 532L.)
- 3. Gilbert, William P.; and Libbey, Charles E.: Investigation of an Automatic Spin-Prevention System for Fighter Airplanes. NASA TN D-6670, 1972.
- Gilbert, William P.; Nguyen, Luat T.; and Van Gunst, Roger W.: Simulator Study of Applications of Automatic Departure- and Spin-Prevention Concepts to a Variable-Sweep Fighter Airplane. NASA TM X-2928, 1973.
- 5. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors (Second Revision). NASA SP-7012, 1973.
- 6. Ashworth, B. R.; and Kahlbaum, William M., Jr.: Description and Performance of the Langley Differential Maneuvering Simulator. NASA TN D-7304, 1973.
- 7. Moul, Martin T.; and Paulson, John W.: Dynamic Lateral Behavior of High-Performance Aircraft. NACA RM L58E16, 1958.
- 8. Greer, H. Douglas: Summary of Directional Divergence Characteristics of Several High-Performance Aircraft Configurations. NASA TN D-6993, 1972.
- 9. Moore, Frederick L.; Anglin, Ernie L.; Adams, Mary S.; Deal, Perry L.; and Person, Lee H., Jr.: Utilization of a Fixed-Base Simulator To Study the Stall and Spin Characteristics of Fighter Airplanes. NASA TN D-6117, 1971.

TABLE I. - MASS AND DIMENSIONAL CHARACTERISTICS USED IN SIMULATION

I

Weight, N (lb)	••		•	••	•	•••	•	•	• •	•	•	•	•	•	• •		•		•	73	48	30	(16	6 5	19)
Moments of inertia, kg-m 2	(slı	ug-f	(t ²)	:																					
I_X	• •		•				•	•	•		•		•		• •					1	12	662	2 ((93)	39)
I_Y	•••		•				•		•			•	•	•	• •				•	53	14	ł 7	(39	9 1	99)
I_Z							•	•				•			•				•	63	03	35	(4	6 4	92)
I_{XZ}																									
Wing dimensions:																									
Span, m (ft)			•				•				•	•	•		•					•	•	8.8	4	(29	.0)
Area, m^2 (ft ²)			•		•			•	•					•	•					•	•	2 6	.0	(2	80)
Mean aerodynamic chord,	m	(ft))	•••	•	• •	• •	•	•	• •	•	•	•	•	•		• •				3.3	335	(10.	94)
Surface deflection limits:																									
Horizontal tail —																									
Symmetric (δ_h), deg .			•		•						•	•	•	•	•		•			•	•	• •	•	. =	⊦2 5
Differential (δ_{D}), deg .			•		•	• •					•			•	•	•	•			, 1	=5 j	per	: S1	ırfa	ace
Ailerons (flaperons), deg					•						•		•	•	•	•	•	•			•			. =	⊦20
Rudder, deg	• •		•		•	• •			•		•	•	•	•	•	•	•		• •	, .	•		•	• =	⊦30

TABLE II.- X-AXIS FORCE COEFFICIENT DATA USED IN SIMULATION

[All data are for $\delta_{lef} = 25^{\circ}$ unless otherwise indicated]

(a)	C_X
()	- ^

							BETA						
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	= 5.0	0.0	+ 5.0	+10.0	+15.0	+20.2	+30.0	+40.0
-10.0	09690	09460	09240	09130	-,09860	÷.09920	09610	09720	C9280_	08970	08860	08630	08400
- 5.0	07840	07940	08050	08100	08640	09220	09410	09050	08490	07520	07113	-,06290	-,05460
0.0	06410	06170	05930	05820	06600	06370	06650	06460	06200	05360	05470	05690	05920
+ 5.0	•00B30	00370	01570	02170	01980	01760	02960	C1850	01760	01460	00970	.00020	.01020
+10.0	00830	.03120	.01070	.01540	.01440	.01900	.02210	.02500	.02540	.02670	.02250	.01420	.00590
+15.0	.06440	.05920	.05400	.05140	. 06400	• 07070	.08280	.08280	.07580	.06840	.05380	.02460	00450
+20.0	.02550	.05850	.09160	.10810	.12030	•12470	.12190	.12980	.12370	.11310	.09920	.07140	.04370
+25.0	.13600	•13360	.13130	.13010	.13370	•13590	.13480	.14300	.14300	.13250	.12560	.11180	.09810
+30.0	.10460	• 11 240	.12020	.12400	.13470	.14490	.14600	.14980	•1351û	.13200	.12560	.11280	.10010
+35.0	.13340	• 11 480	.13560	•12640	.13160	• 14810	•15360	• 14160	• 12236	.11660	.11100	.12300	.12810
+40.0	•14440	.14020	.13000	.12210	.12650	.14320	.14540	.13770	.12870	.11500	.12180	.14370	.14520
+45.0	.13240	.13400	.12350	•11820	.12240	• 13650	.13860	.12460	•12300	.11810	.11660	.12820	.12700
+50.0	.12550	.11690	•11200	.11150	.11260	•12550	.13110	.12020	.11130	.10960	.11230	.11860	.12140
+55.0	.12590	.11410	.11650	•11490	.11140	• 11970	.12610	.11780	.10730	.11180	.11790	.10790	.12220
+60.0	.17200	.11530	.10700	•11310	.11180	•12160	.12920	.12600	.11070	.10920	.10240	.10730	.11520
+70.0	. 10670	.09690	.08230	. 08 48 0	• 07560	.08790	.08650	.08050	.07270	.07810	.08020	.08850	.09760
+80.0	.10750	.09440	.09080	.08630	.07830	.07940	.07720	.07600	.07503	.08430	.08840	.08950	.10460
+90.0	.12630	.10460	.09920	.09280	.08290	.08400	.08490	.08100	.08180	.09100	.09440	.09640	.11700

(b) $\Delta C_{X,\delta_h=-25^0}$

		· · · · · · · · · · · · · · · · · · ·					BETA						·····
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	05600	05990	06370	06560	06190	06600	06570	06700	07140	07500	06960	05910	04850
- 5.0	05860	05690	-,05510	05430	06130	-,06040	05810	05950	06150	06340	06410	06550	06700
0.0	05350	05490	05640	05700	05280	05320	04520	05140	05360	06050	05620	04760	03890
+ 5.0	06010	05850	05580	05600	05900	06130	04830	~.05630	05020	05660	05230	04360	03500
+10.0	01710	02990	04270	04910	05220	04980	05150	05750	05570	05660	05620	05540	05470
+15.0	05080	04840	04600	04480	05310	04410	05280	-,05500	05350	05840	05020	03400	01780
+20.0	.03680	.03140	03410	-,05180	04180	03510	02860	04110	04610	05380	04310	02180	00060
+25.0	0087C	01810	02760	03230	03150	02 660	02080	03180	04350	03990	03350	02090	00830
+30.0	.03020	.01010	01000	01990	01960	01600	00800	01980	03100	02060	03020	04930	06850
+35.0	•09850	.07300	.00810	CJ480	00340	00470	00260	00430	.00150	.00600	.00270	-,02730	05040
+40.0	01660	•02320	.02110	.01550	.01410	.00970	•01290	.02420	.02270	•02020	•00940	.02100	02360
+45.0	.01510	.01770	.03550	.03900	.03320	• 02 240	•02820	.03980	. 03520	.02690	.03320	.02140	.02110
+50.0	.03590	.03360	.04620	.05000	.04690	.03790	.04120	.05220	.05500	.04290	.03360	.02900	.03660
+55.0	.03680	.04170	.04220	.05210	.05690	.05420	.06040	.04900	.06260	.03650	.02750	.03790	.03470
+60.0	.0411C	.04640	.05530	.04760	.05550	.05150	.05710	.06120	. 05790	•04220	.03680	.04230	.02770
+70.0	•05850	• 06 440	.07120	.06240	.07160	.06180	.06700	.07140	.07340	.05770	.06090	.05870	.06070
+8ú.J	.07380	•C8430	.07610	.07420	.07300	.07250	.07770	.07610	.07560	.06540	.06450	.07180	.06670
+90.0	.07290	.08650	.08100	.08240	.08330	.07940	.07960	.08430	.08610	.07340	.07220	.08040	.06670

(c) $\Delta C_{X,\delta h^{=}-10^{\circ}}$

							BETA						
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	01490	01660	01810	01880	01380	01440	00990	01510	01243	01060	01410	02130	02840
- 5.0	00250	00830	01400	01690	31550	01390	01780	01450	01080	01560	01620	01750	01900
0.0	02520	01900	01280	00960	01120	01650	01160	01160	.00040	01580	00250	.02420	.05090
+ 5.0	05190	03300	01410	00470	01440	01810	00650	01260	01310	06270	00500	00960	01430
+10.0	01450	01340	01220	01150	00560	00940	01060	01050	00380	00190	00260	00420	00580
+15.0	05250	C3120	00990	.00080	01130	00020	00010	00440	01250	00190	00410	00850	01300
+20.0	.04640	.02410	.00160	0ù950	00830	00060	.00150	00430	00080	00420	00610	00980	01360
+25.0	.02010	.01240	.00460	.00080	•0012Ú	<u>,00470</u>	.0600	0C110	00480	00590	.00230	.01860	.03490
+30.0	00230	.00270	.00760	.01020	-0080J	.01000	.01490	•C0640	-,00030	.00690	.00430	00100	00630
+35.0	.05560	.05540	.01590	.01570	.01330	.01600	.01460	• 01 310	• C164C	.02360	.0232?	00060	01760
+40.0	01450	.02270	.02060	.01970	•)2460	.02360	.03460	.03430	.03020	,03480	.01820	.03090	00560
+45.0	•01020	.01340	.02400	.03030	.02980	• 01 740	.02930	• 03870	.03070	•03250	.03310	.02480	.02640
+50.0	.02310	.01700	.02776	. 02 74 0	.03180	.02510	.02630	.03330	• 036 <u>4</u> 0		.02840	.02570	. (3390
+55.0	.01870	.01910	.01480	• 02290	• 02580	.02650		.C1880	.02960	.02130	. 01430	.02760	.02710
+60.0	.01490	.01880	.02070	.01540	.01760	.01500	.02360	. 01830	.02010	.01300	.02860	.0304C	.01600
+70.0	.02550	,02980	.03290	.02740	.03100	.02050	.03030	.02440	. 031 60	.03180	. 03340	.03200	.03620
+80.0	.03680	.03530	.03480	.03660	.03670	.03380	.03900	.03970	.04080	.03870	•03900	.04000	.03840
+90.0	.03790	.03990	.04060	.04450	.04220	.04000	.03830	.04390	• 04410	.04160	.04350	.04590	.04540

.

.

=

(d) $\Delta C_{X,\delta h=100}$

							BETA		······				
AL PHA	-40.0	-30.0	-23.0	-15.0	-10.0	- 5.0	0.0	+ 5,0	<u>+10.0</u>	+15.0	+20.0	+30.0	+42.0
-10.0	.01270	.00450	00350	00750	00320	00590	00720	00790	00710	00420	00200	.00230	.00660
- 5.0	.00500	00020	00530	-,00790	01010	01010	0980	00900	C0640	00930	00730	00330	.00060
0.0	00340	00630	00920	01060	00460	01420	00760	01250	0510	00900	00840	00740	00630
+ 5.0	06200	04140	02070	01040	01200	01810	00650	01110	0080	00850	01230	01990	02770
+10.0	02890	02350	01810	01540	01500	01300	00820	01430	01620	01550	01680	01960	02230
+15.0	03980	02940	01900	01380	01040	01940	02620	01.840	02030	01480	01840	02580	03320
+20.0	.02480	.00220	02340	-,03170	02600	02720	02550	03080	02520	02720	02373	01670	00990
+25.0	01830	02260	02700	02910	03120	03460	03500	04020	03710	03890	03640	03150	02660
+30.0	03110	02 990	02870	02800	03450	03870	03580	03990	03150	03830	04210	04960	05720
+35.0	.02330	.01770	02740	03030	03310	03350	03560	-,02960	C2250	02220	02150	04330	05820
+40.0	05020	02520	02540	02530	02510	03030	02500	02130	02650	01870	02390	01660	04880
+45.0	03380	03160	02460	02450	02860	03510	02910	02260	02580	02060	01820	02170	02570
+50.0	02670	02730	01750	02170	01800	02750	02100	01520	01480	01430	01410	01950	01570
+55.0	03260	03270	02480	01900	01840	02260	01700	02780	01200	02150	02920	02310	02660
+60.0	03860	03280	02210	02500	02780	02870	C2330	02330	02360	02180	02080	02510	03840
+70.0	03870	04100	03570	03060	00380	02130	.01650	00490	CC216	03120	03360	03360	03190
+80.0	03760	03940	03840	03280	03710	03840	03020	03420	03190	03290	03800	03690	03460
+90.0	05360	04570	04000	03660	03480	03560	03600	03660	03340	03430	03890	04000	04500

43

1------

(e) $\Delta C_{X,\delta h=250}$

BETA

ALPHA	-40.0	-30.0	-20.0	-15.0	-10-0	- 5.0	0.0	+ 5.0	+10-0	+15.0	+20.0	+30.0	. +40.0
-10.0	02430	03300	04150	04580	04910	05320	05810	05450	04770	04570	04190	03440	02690
- 5.0	03520	04110	04690	04990	05310	05360	05820	05640	05090	05210	05130	04960	04800
0.0	05100	05390	05690	05820	05280	05820	05780	06010	05510	05670	05240	04370	03490
+ 5.0	05370	05870	06380	06630	06620	06,950	06440	06850	05870	06230	06460	06930	07410
+10.0	053.80	05790	062.00	06400	06210	07070	07580	07180	07550	06670	06740	06900	07060
+15.0	10010	08550	070.90	-,06360	07750	07200	08250	08520	08170	07310	36270	04170	02090
+20.0	01960	04530	07120	08400	08450	09060	09800	10210	09080	09000	07970	05890	03820
+25.0	05420	06740	08070	08730	09610	10420	10950	+.1112d	10530	09890	08860	05810	04780
+30.0	02290	04900	07500	08800	09940	10600	10730	10970	09910	09270	08920	08230	07550
+35.0	01850	02740	07580	08040	09710	10490	10640	09810	08800	07610	07180	08640	09410
+40.0	09680	06630	06980	07280	09290	09860	09390	09180	08750	07560	08100	06230	09040
+45.0	07890	08250	07570	07880	08440	09320	09080	08060	07970	07290	06640	07190	06880
+50.0	-,07060	07410	06710	07240	07050	08190	08090	07210	06850	06300	05960	06960	06140
+55.0	08140	08010	07660	06900	06660	-,07580	07160	07840	06130	06550	08000	~.07480	07580
+60.0	09460	08790	07330	07140	06220	07680	06870	06950	06880	06860	06970	07910	09900
+70.0	10400	10430	09140	08660	04410	05080	03840	02860	04060	08640	09380	09000	09640
+80.0	10840	10840	10640	09910	10060	10340	09940	03990	09790	10440	10770	09720	10240
+90.0	11960	10550	11130	10530	09990	-,10220	10370	-,10070	09730	10340	10940	09700	10990

(f) $\Delta C_{X,lef}$

	c	т	۰
			ш

·····							HEIA_						
AL PHA	0_0	-30.0	-20-0	-15.0	-10-0	- 5.0	0.0	t_5.0	+10-0	+15+0	+20_0	+30-0	+40-0
-10.0	.05510	.06140	.06780	.07100	.08060	.07850	.07450	.07680	.07550	.07110	.06810	.06210	.05610
- 5.0	.04030	.04830	.05630	.06030	.06.390	. 06 930	.06970	.06770	.06440	.05590	_05060	.04000	.02930
0.0	.03880	.03880	.03880	.03890	.04640	.04270	,04360	.04540	.04340	.03870	.03650	.03220	.02790
+ 5.0	03500	01490	.00700	.01750	.01500	.01160	,02450	.01440	.01490	.01580	.00790	00800	02410
+10.0	.00600	.00090	00410	00660	00560	01100	01280	01450	01300	01250	-,00980	00460	.00060
+15.0	05320	-,04580	03840	03470	04720	05360	06710	06450	05670	04630	03570	01440	-00680
+20.0	00590	03870	07170	08810	09810	-,10250	10280	10700	09910	09380	08320	06210	04110
+25.0	10650	-,10820	11010	11100	11440	11300	11130	11760	12420	12290	11400	09610	07840
+30.0	12440	11700	10960	10580	11610		11870	12750		12270	11220	09130	07050
+35.0	10030	08850	11600	11010	10540	11830	12340	11440	09770	09670	09050	10120	10500
+40.0	10420	10380	10010	10020	09630	-,10840	10850		09790	08740	09550	~.09960	09920
+45.0	08420	09490	09110	08740	08800	10490	10230	08780	09210	08930	08320	08400	07420
+50.0	07370	08180	07560	07740	07600	09000	08770	07860		07130	07390	07910	06670
+55.0	07950	08140	08270	07510	07490	08260	07520	08150	06990	07370		07490	07310
+60.0	08250	07760	07390	07510	07110	07670	07220	07040	07150	07370	06970	07060	08270
+70.0	07290	07280	06570	07060	06310	07230	06730	06680	05950	06400		~.07030	06520
+80.0	06610	06410	06200	05850	05560	05600	05260	05250	05290	05720	06130	~.06030	06400
+90.0	06960	06220	05810	05710	04920	05180	05210	04930	04910	05440	05760	05760	06290

45

TABLE II. - Concluded

	(g) $\Delta C_{X_{q,lef}}$,	$\Delta C_{X,sb}$, and C_{Xq}	
α, deg	∆C _{Xq, lef}	∆C _{X, sb}	°xq
$ \begin{array}{r} -10.0 \\ -5.0 \\ 0.0 \\ +5.0 \\ +10.0 \\ +15.0 \\ +20.0 \\ +25.0 \\ +30.0 \\ +35.0 \\ +40.0 \\ \end{array} $	$ \begin{array}{r} -1.2200 \\ -1.6600 \\ -1.6200 \\ -1.5800 \\ -1.9600 \\ -2.5100 \\ -2.0400 \\ -1.6400 \\ -8240 \\8240 \\8170 \\ -1.1000 \\ \end{array} $	0490 0498 0498 0498 0493 0493 0470 0453 0433 0410 0383	<u>•9530</u> <u>1.5500</u> <u>2.4600</u> <u>2.9200</u> <u>3.3000</u> <u>2.7600</u> <u>2.0500</u> <u>1.5000</u> <u>1.8300</u>
$ \begin{array}{r} +45.0 \\ +50.0 \\ +55.0 \\ +00.0 \\ +70.0 \\ +80.0 \\ +90.0 \\ \end{array} $	$ \begin{array}{c}5500\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\$	0354 0322 0287 0250 0171 0087 0.0000	1.2100 1.3300 1.6100 .9100 3.4300 .6170 .2730

TABLE III. - Z-AXIS FORCE COEFFICIENT DATA USED IN SIMULATION

[All data are for δ_{lef} = 25° unless otherwise indicated]

(a) C_Z

·							BETA						
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10+0	+15.0	+20.0	+30.0	+40.0
-10.0	.77790	.74200	.70610	•68810	.73160	. 71 950	.72070	.68260	. 66210	•63240	-62000	.59500	.57010
- 5.0	.55000	.49120	.43230	. 40290	.38820	. 39010	.41130	. 37040	. 33490	. 27140	.30060	.35890	41720
0.0	.31170	.21030	.10900	.05830	.05220	.02090	.02630	.02030	• 03770	02280	.01390	.08720	.16060
+ 5.0	36190	-, 33580	30960	29660	-,31430	- 36840	32390	35730	31930	31950	35150	41550	47940
+10.0	45410	-,53270	61140	65070	66450	71080	73180	70840	69850	67990	66630	63920	61220
+15.0	97290	96590	95900	-, 95 550	-1.03740	-1.06970	-1.12300	-1.06350	-1.01760	-,99950	95430	-,86390	77350
+20.0	78780	-1.01990	-1.25210	-1.36810	-1,43800	-1.44850	-1.41160	-1.40460	-1.33650	-1.32060	-1.29960	-1,25780	-1.21600
+25.0	-1,30650	-1.45220	-1.59790	-1.67080	-1.70760	-1,75550	-1.77360	-1.72100	-1.67680	-1.60490	-1.57170	-1,50540	-1.43910
+30.0	-1.75500	-1.79340	-1.83180	-1.85100	-1,94680	-2.05790	-2.09190	-2.04050	-1.93810	-1.80810	-1.76440	-1.67690	-1.58950
+35.0	-1.78320	-1.88980	-2.01670	-2.05370	-2.17250	-2.27260	-2.31340	-2.25590	-2.13380	-2.01540	-1.88030	-1,86080	-1.65170
+40.0	-1.90350	-2.00720	-2.13440	-2.18280	-2.30620	-2.41940	-2.45460	-2.40330	-2.30660	-2.11940	-2.08640	-1.92980	-1.79100
+45.0	-1.86900	- 2.02380	-2.16590	-2.25420	-2.35070	-2.50450	-2.50270	-2,38520	-2.30640	-2.20000	-2.09620	-1,93690	-1.76550
+50.0	-1.86060	-1.97790	-2.14480	-2.20660	-2.33510	-2.48980	-2.51180	-2.36850	-2.28090	-2.15260	-2.11870	-1,89950	-1.72290
+55.0	-1.89400	-2.04080	-2.16660	-2.21910	-2.28160	-2.34870	-2.42930	-2,35680	-2.20910	-2.19190	-2.11500	-1.90050	-1.74350
+60.0	-1.95650	-2.10930	-2.16530	-2.24000	-2.23900	-2.38290	-2.41530	-2.34280	-2.21170	-2.14260	-2.09190	-1,96130	-1.82690
+70.0	-1.97540	-2.16310	-2.20650	-2.24630	-2.19870	-2,24580	-2.22680	-2.21100	-2.17090	-2.16260	-2.14440	-2,01090	-1.78170
+80.0	-2.05370	-2.21950	-2.32660	-2.28350	-2.28540	-2.22150	-2.20900	-2.17480	-2.21240	-2.23470	-2.25830	-2,07760	-1.89510
+90.0	-2.19280	-2.24020	-2.34800	-2.29020	-2.21240	-2,21780	-2.22050	-2.20500	-2.19620	-2.21910	-2.25690	-2.08680	-1.97670

47

1

(b) $\Delta C_{Z,\delta_{h^{=}}-250}$

<u> </u>	. <u></u>						BETA		<u> </u>				
ALPHA	-43.0	-30.0	200	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20+0	+30+0	+40+0
-10.0	.03950	• 08 890	.13830	.16300	.15740	.20450	.19170	.22860	.24910	.20660	.18280	.13530	.08770
- 5.0	.13910	.12490	.11080	.10370	.20050	.18650	.13810	.17600	.20940	.20500	.16490	.08480	.00470
0.0	.17810	• 18160	.18500	.18680	.18050	.17100	.12710	.17770	.13270	.19360	.17760	.14570	.11370
+ 5.0	•30920	.27470	.24000	.22280	.22630	. 25680	.18970	.21800	.13780	.15830	.14820	.12800	.10770
+10.0	.13860	.16110	.18360	.19480	.21310	.22020	.22990	.24330	.21200	.19010	.18270	.16810	.15350
+15.0	.48450	.37630	.26830	.21420	.27130	.24000	.30150	.26000	.20240	.25140	.21350	.13780	.06210
+22.0	09160	.07350	.23870	.32130	•27790	.25040	.23680	.'26130	. 22780	-24820	.21760	.15640	.09530
+25.0	.06200	,14790	.23380	.27680	.28030	.27720	.27440	.25170	.25760	.26550	.21550	.11550	.01560
+30.0	.08560	. 17 250	.25940	• 30290.	.29670	.31960	.27760	.29560	. 302 30	.21470	.20850	.19620	.18390
+35.0	12430	.03410	.21280	.27570	.31380	.34450	.31040	.31480	.24460	.23670	.20700	.39830	.40000
+40.0	.40790	.21510	.27430	.33760	• 33820	, 39620	•40940	, 36370	.36930	.24810	.37620	.17220	.38680
+45.0	.28910	.21890	.19250	.24520	.28010	.38350	.40910	.34210	.35630	.28270	.15830	.15390	.30680
+50.0	.16160	• 21 530	.22260	.19080	.28520	.39780	.36720	.24960	.23720	.11030	.24780	.20240	.14010
+55.0	.13930	.20900	.26920	.24810	.23830	.20480	.24210	.31160	.18670	.24260	.26820	.18200	.10230
+60.0	.14070	.23450	.20450	.28960	.19510	.28380	.29190	.19790	.19860	.18780	.23630	.18780	. 22540
+70.0	.15080	.16930	.14240	.18930	.11610	.21790	.18020	•17710	.16980	.16110	.16350	.13320	.07670
+80+0	.09570	.10490	.17450	.15580	.17270	.13150	.18840	.17180	.14550	.10930	.16960	.12410	.07910
+90.0	.22210	.16020	.17490	.12980	.10700	.14530	.16160	. 14830	.10340	.06410	.14770	.09040	.15840

(c) $\Delta C_{Z,\delta_{h}=-100}$

961	· A .
 0E1	

ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	05130	.01000	.07130	.10200	.07950	11360	.08230	.12440	.07500	.06700	.10860	.19190	.27520
- 5.0	05910	.00560	.07050	.10290	.12430	.08200	.08270	.11090	.09480	.16430	.13540	.07760	.01970
0.0	.10540	.09160	.07770	.07080	.13700	.14560	.10040	.11760	00010	.18660	.06870	16690	40270
+ 5+0	.37960	. 25 500	.13030	.06810	.12580	.15030	.09180	.11870	.11310	.06940	.08980	.13080	.17160
+10.0	.32230	.23530	•14840	.10500	.06880	.11380	.11830	.09470	.06670	.08710	.08050	.06750	.05460
+15.0	.50780	.32950	.15130	.06210	.13250	.08000	.08680	.07260	.11520	.10410	.09630	.08060	.06490
+20.0	23600	-,07430	.08740	•16820	• 16660	.09800	.10320	.09780	.04610	.11000	.14790	.22390	.29990
+25.0	12740	03040	•06650	.11510	.11910	.09190	.12670	.09620	.10350	.13470	.09770	.02390	05000
+30.0	.03320	• 06 140	.08950	.10360	.10480	.12720	.10340	.11880	.11360	.09280	.09780	.10780	.11800
+35.0	01880	•C1690	.07290	•07440	.11590	.11153	.10290	.12100	. 09550	.07870	.05230	.25030	.25860
+40.0	.32370	•11240	.15290	.17320	.15350	• 18950	.15850	.16290	• 17670	.14160	.25110	.12410	.34400
+45.0	.20960	• 11 300	.10220	.10120	.11350	.23830	.16400	.17390	.18930	.16760	.05400	.12670	.24170
+50.0	.09280	.10800	.13410	.11390	.13870	.22410	.22920	.14090	.11000	.06180	.16710	.13990	.08740
+55.0	.08760	.16570	.20730	.17690	.16200	.09810	.16390	.17350	.12730	.20510	.23320	.13090	.05820
+60.0	.13400	.14900	.16770	.23110	.17870	.20250	.15740	.18620	.12930	.19760	•14970	.11600	.20180
+73.0	.09690	.13760	.10190	.12890	.08980	.17470	.10720	.19350	.14160	.10720	.12260	.09880	.06130
+80.0	.02000	.12890	.12590	.10590	.11670	.11760	.08840	.07080	.07150	.08900	.13490	.10290	.04520
+90.0	.14400	.07270	.10560	.05970	• 05380	.10260	•14210	.06370	.06990	.09850	.09070	.07350	.12720

(d) $\Delta C_{Z,\delta_h=100}$

•	~	т	٠	
 ъ	드	1	А	_

ALPHA	-43.0	-30.0	-22.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	21930	15560	-,09180	05990	12670	12790	11140	09020	10590	06950	13690	27140	-,40600
- 5.0	340.80	22800	11510	05860	06220	09140	12870	09490	09190	03930	10240	22860	-, 35480
0.0	22100	17830	13570	11430	14260	-,08510	-,12700	08340	14250	09220	08690	07620	06550
+ 5.0	.21790	.08320	05160	11890	12720	07850	12100	12300	20180	16590	12790	05180	.02410
+10.0	.04670	02100	08860	12240	12760	-,12690	16960	14420	12930	13910	11590	06930	-,02260
+15.0	.12780	.02070	08630	13980	16090	-,10910	07230	16010	13350	15120	12700	07850	03010
+20.0	38570	24880	11180	04340	08300	10090	12660	13800	17430	11830	10050	06450	-,02850
+25.0	11280	09400	07510	06560	14450	-,12640	09960	14400	14400	08000	08630	09870	11110
+30.0	.05020	01150	07320	10400	09400	09060	11790	10540	11020	09590	06460	0210	.06050
+35.0	08820	08190	05530	06840	09950	14120	14840	13820	12130	07510	08570	.14400	.18400
+40.0	.26300	01590	.04760	.04340	00740	04040	06900	05640	C1750	.01300	.08010	.02810	.24970
+45.0	,12250	.01570	.01590	00660	.03800	. 03890	03290	. 01980	. 04460	.06170	.01020	00500	.17190
+50.0	.02780	02120	.01250	.03560	.02380	.09970	.06650	02650		06920	05040	.01860	.04550
+55.0	.01440	. 05 200	.02630	.00680	.04330	-,00280	.02130	.09050	C2750	.07420	.07420	.01840	00850
+60.0	.05670	.05710	.02960	. C6780	.03140	.06880	.02270	.03110	00660	.02360	.04490	.05280	,11330
+70.0	.02740	.08870	.04300	.07500	05800	.02000	13370	-,03250	03850	.07570	.10370	.05650	.00260
+80.0	00280	• 05 500	.08280	.01600	.09710	.06950	.06430	.03330	.04710	.03610	.10790	.07230	.03060
+90.0	<u>.1</u> 4070	.08900	.11810	.07050	.03430	.05490	.08310	.07020	.07670	.02810	•11270	.08250	.12090

_

(e) $\Delta C_{Z,\delta h}=25^{\circ}$

Ω.	C	т		
0	с.		н	

AL PHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	C.O	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	47340	36330	25310	19800	21810	22550	24960	19600	21050	17480	23130	34400	45690
- 5.0	44850	34410	23960	18740	20010	22770	24130	19370	-,17860	12990	21980	39960	57930
0.0	17760	18270	18800	19050	18280	17940	20710	16650	20000	17750	18440	19790	21150
+ 5.0	01010	07000	13000	15990	19620	15340	19700	16780	22950	21330	13120	.03290	.19700
+10.0	.01270	07810	16870	21410	25400	22820	17940	21290	15880	20230	17690	12600	07490
+15.0	•44280	.17810	08650	21880	16360	21320	14550	17770	20530	17960	18360	19160	19960
+20.0	12450	11350	- <u>.102</u> 50	09700	14800	17920	22350	18250	22670	13460	09990	03040	.03920
+25.0	07120	07840	08570	08930	14480	15300	15820	17490	17120	11440	10320	08060	05800
+30.0	19960	15470	10970	08720	10380	14530	16210	13260	15890	17180	08530	.08750	.26050
+35.0	.07710	.00910	03860	~.08890	10610	12090	11680	09680	14980	10910	09490	.18420	.27370
+40.0	.26120	.C4140	.04230	.03900	. 33000	01010	00810	02130	. 00470	00940	.14810	00400	.26000
+45.0	.15610	• 04640	.02320	.04030	.02080	. 06 350	.06440	.00320	.02550	• 05460	04260	.03640	.17120
+50.0	•04900	03040	.00890	00110	00950	.10880	.06550	.01830	.03840	05820	.30183	.01170	.04820
+55.0	.04570	.02930	.04520	.00580	.01180	05200	.02130	.04810	04510	00070	.07350	.03490	.00510
+60.0	.08360	.07230	.02180	• 04460	01460	.06490	.03450	01950	02990	00840	.02590	.03770	.17580
+70.0	.07550	.11640	.04780	.08200	05590	11130	12560	12540	C618J	.05650	•10930	•05050	.04390
+80.0	.10360	.13400	.13010	.07680	.13380	.08300	.10490	13150	.09370	.07440	.13540	.08470	.12900
+90.0	.24150	.13890	.15000	.09800	.09130	.07990	.07150	.10990	.06620	.07300	.08980	.10890	.20090

2

(f)	$\Delta C_{Z,lef}$	
-----	--------------------	--

 	8ETA

	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
ALPHA													
-10.0	.22200	.14910	.07620	.03990		01.000							
		• • • • • • • • • • • • • • • • • • • •		• 03990	.03490	<u>018C0</u>	01990	02880	.01580	.01390	01070	05970	10880
- 5.0	16500	10430	04350	01310	02730	04550	10300	09940	02390	.04360	01120	12060	23010
													•23010
0.0	29960	20060	10170	05220	06630	03460	07110	10220	08750	04090	04930	06610	08300
+ 5.0	.392 50	.20530	01700	075/0	0170								
	• 392 30	• 20 550	•01790	07560	04760	01880	10510	04510	08210	08870	01230	-14070	.29350
+10.0	.01630	01990	05600	07410	10280	04320	05780	07320	07030	09070	09020	08910	0.0700
								•01520			09525	08910	08790
+15.0	.09470	.01460	06540	10550	05830	04180	.00210	05430	07310	08390	13720	24390	35050
+20.0	17900	11240	04570	01240	.03670	<u>•01940</u>	00700	02430	08620	11080	07480	00280	.06920
+25.0	17790	06710	042.00		10/00	07000							
			•04380	.09920	.10690	• 07880	.07610	<u>• 01 820</u>	.02760	.00840	.03890	<u>•09990</u>	.16080
+30.0	.03220	.06870	.10520	.12350	.14920	• 13880	•12230	.12420	.06070	.06500	.09090	.14260	10//0
						010		•12 +20		.00,00	•09090	•14200	•19440
+35.0	.16890	.13920	.12980	.09870	.09670	.13240	.12520	.11480	.00500	.05340	.05550	.31060	.37610
+40.0	•30720	.11500	•08860	.16850	.12220	<u>.16180</u>	.14670	<u>•18410</u>	15610	.13290	.24120	.10300	.28210
+45.0	.15900	.15600	.04610	13430	12710	10//0							
	•13300	•19000	.04010	.13430	•12710	<u>•18460</u>	<u> 1 7060 </u>	<u>• 09070</u>	.14170	•14530	.06920	• 09440	•20630
+50.0	.05550	.11310	.14950	.07230	.13020	• 19560	.17390	.05880	.12200	02070	1(010	070/0	
					.13020	•17500	•11370	• 09880	.12200	.03070	.16910	.07360	•04050
+55.0	.03040	.08140	•15640	.12710	.15100	.09520	.08190	.12650	• 0408C	.14820	.18310	.05520	.00180
+60.0	.07140	<u>12</u> 840	<u>•11490</u>	.16360	.09140	•12050	.07100	.08570	.05980	.06290	.11300	.05350	.11990
+70.0	.056 90	.07150	05400	00440	07070	11.055							
	•070 40	.07150	•05690	.08660	.07070	.11920	•08090	.10400	.07920	.04940	<u>.08620</u>	.06500	.02910
+80.0	.044 90	• 11 400	.09060	. 05 99 0	.10950	.08120	.05110	.05380	.06000	07140	106 20	10720	
					• • • • • • • • • •					.07140	.10620	.10730	.08850
+90.0	.15890	.12440	.09950	.04560	.06730	.07690	.10060	.09000	.05240	.07000	.10800	.11810	.14240
												T T.B. V & V	

TABLE III.- Concluded

	(g) C_{Zq} , $\Delta C_{Zq,1}$	lef, and $\Delta C_{Z,sb}$	
α, deg	^C zq	$\Delta C_{Zq, lef}$	∆C _{Z, sb}
$ \begin{array}{r} -10.0 \\ -5.0 \\ 0.0 \\ +5.0 \\ \end{array} $	$ \begin{array}{r} -23.9000 \\ -29.5000 \\ -29.5000 \\ -30.5000 \\ \end{array} $	15.1000 3.7000 .6000 -1.3000	<u>0087</u> <u>0044</u> <u>0.0000</u> 0044
+10.0 +15.0 +20.0 +25.0	<u>-31.3000</u> -20.1000 -27.7000 -28.2000	<u>-3,8000</u> - <u>4,6000</u> -,2000	0087 0130 0171 0212
+30.0 +35.0 +40.0 +45.0	-29.0000 -29.8000 -38.3000 -35.3000	-2.7000 -3.5000 -1.3000 6500	0250 0287 0322 0354
+50.0 +55.0 +60.0 +70.0 +80.0	-32.3000 -27.2000 -25.2000 -23.7000 -9.3500	$ \begin{array}{c} 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \end{array} $	0383 0410 0433 0470 0493
+90.0	-2.1600	0.0000	0500

_

TABLE IV.- PITCHING-MOMENT COEFFICIENT DATA USED IN SIMULATION

[All data are for δ_{lef} = 25° unless otherwise indicated]

(a) C_m

· · · · ·							BETA						
AI PHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0`	+20.0	+30.0	+40.0
-10.0	.12540	.07480	.02420	00110	03140	04520	04420	05030	03090	00810	.00880	.04250	.07630
- 5.0	•06830	•03630	.00430	01170	03190	04450	05100	04900	03830	01490	00850	.00420	.01690
0.0	00230	00980	01730	02110	03160	02750	02500	02930	03230	01980	01820	01490	01170
+ 5.0	03090	02540	01990	01710	02220	01660	01820	01800	02100	01750	01510	01030	00550
+10.0	02570	02420	02270	02200	02130	01680	01480	01440	01790	01730	00630	.01570	.03770
+15.0	06320	04790	03250	02480	02380	01870	00930	00980	01820	01980	00450	.02610	.05670
+20.0	13830	08990	04150	01730	01360	01010	01260	01060	01810	00420	.00610	.02680	.04740
+25.0	15960	09900	03840	00810	01400	01550	01220	01180	00830	02930	00100	.05550	.11210
+30.0	.07750	.04040	.00320	01530	01720	02010	01080	00540	•01580	.00910	•00440	00510	01460
+35.0	.30910	.19300	.04380	0990	02350	03670	02570	02270	• 00140	00250	00550	.22770	.30090
+40.0	.25320	•19710	.03770	00980	00330	02970	04280	00550	0480	.00220	.01620	.22160	.28130
+45.C	.31030	.24710	.12830	.01190	.00050	.03220	.01520	01740	.02460	.03330	.15650	.27110	.33840
+50.0	.29380	.21650	.17250	.10110	.01690	.07360	.08040	.07280	.03960	.12290	.20840	.19290	.21590
+55.0	.15500	.06140	.10720	.14240	.03070	.05680	.07700	.03610	.05050	.11840	.13410	•02960	.08320
+60.0	.00250	05310	08760	06180	03710	.00870	.05910	.06640	• 011 50	00060	07990	05470	02590
+70.0	20060	27540	32340	29800	30540	26030	26610	28400	32720	31040	33290	30380	23300
+80.0	45360	47650	47210	45820	47250	44510	42200	45250	47710	45650	47690	47890	47520
+90.0	60570	60360	59740	58860	59780	58780	58490	59800	59750	60010	59120	59100	59160

ł

(b) $\Delta C_{m,\delta h=-250}$

							BETA						
AI PHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	.09090	.12740	.16390	.18210	.20980	.22530	.24570	.23070	.21130	.19300	.18180	.15950	.13700
- 5.0	.10060	.13770	.17490	.19350	.21620	.21580	.20710	.21910	. 22290	.19850	.19700	.19420	.19130
0.0	.16380	.17950	.19520	.20310	.20470	.19500	.19410	.19990	.21100	.20920	.20310	•19070	.17840
+ 5.0	.22460	.21650	.20840	.20430	.20390	.19780	.21420	.20980	.20900	.21750	.21700	.21600	.21510
+10.0	.22140	.22500	.22860	.23050	.22440	.22860	.23940	.23190	.22780	.23180	.23030	.22720	.22410
+15.0	•19830	.22310	.24770	.26000	.26160	.25810	.25130	.25330	. 26360	.26190	.24790	.21970	.19150
+20.0	.24410	.25300	.26200	.26650	. 27490	.26620	.25950	.26070	. 27620	.26770	.24960	.21350	.17740
+25.0	.18720	.21630	.24550	.26000	.27470	.26670	.26230	.26480	. 27890	.24940	.24140	.22540	.20940
+30.0	.05650	.13000	.20350	.24020	.26080	.27200	.26660	.26510	• 23690	.19430	.20380	.22280	.24190
+35.0	01840	.05250	.15140	.18750	.24140	.26380	.26830	.25270	. 206 90	.18950	.18460	06460	15370
+40.0	.15500	.11240	•14490	•15350	.20360	.28630	•26990	. 27 300	.23530	.18930	.13070	.09550	.10720
+45.0	04500	.15610	.03450	.14000	.18680	.19660	.21010	.23220	.16410	.14020	.05210	.13420	06500
+50.0	08690	02460	.11510	.11060	.14430	.12290	.15710	.15630	.16190	.11720	.03380	.02160	.00880
+55.0	02070	.06560	02720	.05140	.12710	.06280	.14510	• 09620	.12810	• 04450	02210	.07120	.05130
+60.0	.05560	.09750	•11230	.07330	.08850	.04810	.08740	.07350	.05260	.06500	.06240	.11270	.01260
+70.0	.06990	.08600	.10560	.10070	.11000	.08220	.09720	• 10120	.12960	•10820	.11690	.09810	.11520
+80.0	.12610	<u>•1</u> 2413	.12670	.11650	.14390	.14450	.12890	.14690	.15360	.12590	.13190	.12560	.12390
+90.0	.14460	.12330	.11710	.11910	.11670	.12730	.14610	.11400	.12520	.12080	.10860	.11620	.13650

:

1

(c) $\Delta C_{m,\delta_h=-100}$

	•	•	T A	
	_ n	<u>-</u>	1.4	

ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5+0	0.0	+ 5+0	+10.0	+15.0	+23.0	+30.0	+40.0
-10.0	.06350	.07560	-08770	.09380	.11110	.11630	.12170 [·]	.12610	.11790	.11020	.10500	.09480	.08440
- 5.0	.06000	.07750	.09510	.10390	.11230	.11330	.11530	.11480	.11550	10890	.10640	.10160	.09680
0.0	.09070	.09730	.10390	.10720	.10660	.10870	.11200	.11030	.11330	.10650	.10570	.10410	.10250
+ 5.0	.08370	.09410	.10460	•10970	.10800	.10460	.11090	.10620	.10850	.10610	.10590	.10540	.10500
+10.0	•09000	• 09840	.10680	.11110	.10690	.10390	.10320	.10240	.10190	.10780	.10050	.08590	.07120
+15.0	•09250	.10010	.10750	.11130	.11420	.11180	.10670	.10440	.11090	.10920	.10570	.09870	.09170
+20.0	•10230	.10820	+11420	.11710	.11450	.11630	.11570	.10830	.12430	.11230	.10210	.08170	.06140
+25.0	.06930	.08420	.09920	.10670	.11690	.11300	.11330	.11070	• 11840	.09330	.09490	.09820	.10140
+30.0	02940	• 01 840	.06620	.09010	.10320	.11450	.11520	.10610	.06720	.05950	.05120	.03470	.01820
+35.0	07940	04440	.01870	.03680	.08930	.10230	.10840	.09160	.06600	.04840	.04520	20020	28570
+40.0	.09300	.02100	.03890	.05970	.08370	.11350	.12160	.10230	• 0967 V	.05420	.03080	.02610	.00080
+45.0	12840	.07280	.01900	.05850	.08250	.07290	.06120	.08850	.04280	.02670	00690	•04140	13590
+50.0	18030	06730	.05370	.03630	• 08 5 3 0	.02900	.06970	.06470	.07070	.05270	.01940	00750	05660
+55.0	07250	.00900	01990	.01500	.08360	.03820	.09400	.03900	.06810	00280	04620	.03710	01160
+60.0	03010	•04620	.05580	.05120	.05500	.01200	.07060	.03140	.01160	05000	.09050	.05100	06920
+70.0	.00290	•04100	.04710	.02690	• 03490	00690	•00790	.02280	.03630	.03180	.04110	.04110	.00850
+80.0	.00170	.05380	.02240	.03790	• 05340	.05740	•04420	.04330	.06460	.03290	.05050	.06340	.05220
+90.0	.07050	.06040	.04830	.05290	•05350	.04110	.04660	.03880	• 04130	.04200	.03520	.03430	.04530

Ĺ.

I.

(d) $\Delta C_{m,\delta_h=100}$

<u></u>	<u> </u>						BETA						
ALPHA	-40.0	-30.0	-23.0	-15.0	-10.0	~ 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	07910	08870	09820	10300	09840	10480	10330	09960	09390	09390	09350	09250	09160
- 5.0	13250	11620	09990	09170	10260	11060	10400	10380	10220	09760	09480	08910	08350
0.0	10840	10560	10290	10150	10570	11440	11430	-+11310	10580	10330	10000	09360	08710
+ 5.0	03950	07080	10210	-,11780	11490	11800	11310	11730	12130	12000	10960	08890	06810
+10.0	08870	09910	10960	11470	12380	12160	12160	12370	11800	11980	11430	10350	09260
+15.0	03180	06260	09350	10900	11570	11470	11850	11610	11760	10980	10010	08090	06170
+20.0	.03280	02010	07300	09940	11560	10890	09670	11440	12040	09350	07850	04870	01880
+25.0	.09720	• 02 440	04840	08480	10970	10590	10990	11030	10680	04820	05270	06170	07080
+30.0	.03330	01000	05310	07480	08510	09330	09320	09230	08640	06380	04270	00030	.04210
+35.0	.01500	02580	03850	05830	07040	07550	07570	06970	07140	05330	04430	26550	32670
+40.0	.00390	01550	04080	02070	04130	01740	01800	02900	01330	03310	04500	04270	05940
+45.0	19550	00470	05210	02190	.01050	01320	03650	.00110	03970	03460	08500	02130	19280
+50.0	22080	13280	00580	01840	.02970	03470	01820	01320	.01700	02220	04010	08740	11270
+55.0	13470	07590	05740	02390	• 04,020	04530	.00590	02650	.02030	02250	11030	04320	07700
+60.0	07120	02900	.00210	01160	00760	04020	01420	03170	04550	00990	00170	02750	10770
+70.0	05260	04050	03260	01590	.04500	.00080	.12330	.03720	.06540	02480	00280	02410	05640
+80.0	03230	01610	.00100	00810	00270	01160	00430	00510	.00420	01330	.00070	01960	01240
+90.0	.03310	.01640	.02570	00920	.01580	.01440	.01010	.00550	.02500	.00360	.00800	.00570	.01270

ł

(e) $\Delta C_{m,\delta h=250}$

~ ~	
	10

ALPHA	-40.0	-30.1	-23.0	-15.0	-10-0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20_0	+30.0	+40-0
-10.0	21440	-,22100	22760	23090	23020	22960	23130	22140	21600	21820	21910	22060	22220
- 5.0	26790	24320	21850	- 20620	20650	- 20990	21680	20910	19450	- 20720	21510	-,23090	24670
0.0	22560	21580	20590	20090	19630	20730	21150	20630	19660	20460	20190	19660	19120
+ 5.0	05110	11410	17710	20860	21400	21780	21730	21860	20890	20530	18820	15390	11960
+10.0	06380	11450	16530	19060	20870	22520	22350	21430	20220	18440	17620	15960	14310
+15.0	.03290	04850	12990	17070	19520	19480	19520	19770	- 19790	16980	14360	09110	03860
+20.0	.11530	.01020	09500	14760	16850	17920	19960	20300	18240	15080	10080	00100	.09900
+25.0	.07520	00630	08780	12860	15050	16120	18760	16870	14930	12270	08340	00450	.07420
+30.0	.18730	.00250	06220	12460	13150	13520	14320	14140	16710	12650	09180	02230	.04730
+35.0	.07530	00500	05710	09660	08960	08750	08530	08560	13710	08960	08220	30660	37100
+40.0	08450	07810	04950	05070	-,07920	÷.01730	0960	02330	01790	04030	06590	08030	10200
+45.0	20810	00840	11200	04260	04090	02240	02130	• 00520	03160	04150	11830	04370	21220
+50.0	22960	16890	04000	05480	.00450	05200	04080	02780	01990	03300	07330	11470	13610
+55.0	16120	09980	09540	06180	.01110	06120	01910	05520	01580	-,05040	14600	07650	08550
+60.0	1068C	05750	01010	03230	.02610	05520	01700	03770	06200	00990	.00040	04920	14940
+70.0	12300	05740	00920	00790	. 04790	.02970	.09130	.13570	.07860	01490	01180	00900	11060
+80.0	•01660	.02650	.01170	.01520	.02170	.0180	00380	.08910	.02280	00910	.00400	.03280	.04060
+90.0	.10900	.08990	.02080	.02950	. 03930	.02510	.02980	.03620	.04190	.02480	.00520	.07470	.09510

i

(f) $\Delta C_{m,lef}$

<u></u>			<u> </u>		····		BETA		······				
AL PHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10-0	+15+0	+20.0	+30.0	+40-0
-10.0	_01360	.01040	.00710	.02550	.00470	.00670	.01680	.02530	.01580	.01920	.01460	.00530	00400
- 5.0	00960	.03510	.01980	.02720	.03960	.04550	.05040	.05330	.04760	.03410	.03310	.03120	.02930
0.0	.00840	.02300	.03760	.04490	.04250	.03560	.03230	.03890	.04540	.04610	.04230	.03460	.02700
+ 5.0	.01390	.02290	,03200	.03640	.03630	.02880	.03460	.03030	.03710	.03610	.03850	•04330	.04820
+10.0	.01770	.02400	.03)20	.03330	,03820	.03910	.04240	.04010	.03600	.03160	.02110	0.00000	02110
+15.0	03570	00970	.01620	.02920	.04600	.06700	.06930	.06340	.04470	.03240	.02090	00200	02500
+20.0	.01280	.00700	.00130	00160	.01720	.04080	.04820	.03950	.02540	.00110	.00050	00090	00210
+25.0	05120	03540	01960	01160	.00050	.00560	.01690	.00530	.0450	00970	02690	06130	09590
+30.0	04640	03810	02980	02570	03270	03250	02530	04150	03080	03660	03680	03710	03750
+35.0	.02590	00570	00930	02450	04030	03900	04340	-,04200	01540	02440	01590	23810	30020
+40.0	05320	.00630	01550	00910	.00120	.01560	.01680	.00540	. C0440	01200	02630	01290	07610
+45.0	-,15640	,03360	07040	.01770	.00060	.02480	.01060	.02810	02300	01040	09100	.01160	17160
+50.0	18060	12190	.01030	01020	.01960	02300	.00210	.00600	.02130	.01780	07660	05130	09670
+55.0	11780	04750	05830	03350	.04230	05940	.01650	02730	.01510	05340	10330	03280	06370
+60.0	06050	00510	.02260	00750	.01230	00480	00090	00620	02030	02780	01990	00580	09280
+70.0	03340	02530	01190	02850	0147û	05870	00300	02410	.00420	00540	.00350	01980	02100
+80.0	.00750	.01620	.02310	.00900	.01740	.00400	.00230	.01140	.01540	.00080	.01820	.00360	.01330
+90.0	.03360	.02310	.02150	.01520	.03730	.02180	.02600	.02760	.02780	.01280	.01020	.02410	.02020

.

(g) C_{m,1}

BETA

Ξ

						~ ~		·					
ALPHA	-40.0	-30.0	-27.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
ALPHA								-					
-10.0	+12540	.07480	•02420	00110	03140	04520	04420	05030	03090	00810	.00880	.04250	.07630
- 5.0	.06830	.03630	•00430	01170	03190	04450	05100	04900	03830	01490	00850	.00420	.01690
0.0	00230	00980	01730	02110	03160	02750	02500	02930	03230	01980	01820	01490	01170
+ 5.0	03090	02540	01990	01710	02220	01660	01820	01800	02100	01750	01510	01030	00550
+10.0	02570	02420	02270	02200	02130	01680	01480	01440	01790	01730	00630	.01570	.03770
+15.0	06320	04790	03250	02480	02380	01870	00930	00980	01820	01980	00450	.02610	.05670
+20.0	13830	-,08990	04150	01730	01360	01010	01260	01060	01810	00420	.00610	.02680	.04740
+25.0	15960	09900	03840	00810	01400	01550	01220	01180	00830	02930	00100	.05550	.11210
+30.0	.07750	• 04040	.00320	01530	01720	02010	01080	00540	•C1580	.00910	.00440	00510	01460
+35.0	.30910	. 19 300	.04880	00990	32350	03670	02570	02270	• C0140	00250	0550	.22770	.30090
+40.0	•25320	.19710	.03770	00980	00330	02970	04280	00550	00480	.00220	.01620	.22160	.28130
+45.0	.25630	. 19310	.07430	04210	05350	02180	03880	07140	(294)	02070	•10250	.21710	.28440
+50.0	.18380	.10650	.06250	00890	09310	03640	02960	03720	07040	•0.1 290	.09840	.08290	.10590
+55.0	.03300	06060	01480	02040	09130	06520	04500	08590	07150	00360	.01213	09240	03880
+60.0	11750	17310	20760	18180	15710	11130	06090	05360	10850	12060	19990	17470	14590
+70-0	20360	27540	32340	29800	30540	26030	26610	28400	32720	31040	33290	30380	23300
+80.0	45360	47650	47210	45820	47250	44510	42200	45250	47710	45650	47690	47890	-,47520
+90.0	60570	60360	59740	58860	59780	58780	58490	59800	59750	60010	59120	59100	59160

(h) C_{m,2}

RETA			

.

							DEIA_	<u> </u>					
ALPHA	-40.0	-30.0	-20.0	15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	,12540	.07480	.02420	00110	03140	04520	04420	05.030	03090	00810	.00880	.04250	.07630
- 5.0	.06830	.03630	.00430	01170	03190	04450	05100	04900	03830	01490	00850	•00420	.01690
0.0	00230	00980	01730	02110	03160	02750	02500	02930	03230	01980	01820	01490	01170
+ 5.0	03090	02540	01990	01710	02220	01660	01820	01800	02100	01750	01510	01030	00550
+10.0	02570	02420	02270	02200	02130	01680	01480	01440	01790	01730	00630	.01570	.03770
+15.0	06320	04790	03250	02480	02380	01870	-,00930	00980	01820	01980	00450	.02610	.05670
+20.0	13830	08990	04150	01730	01360	01010	01260	01060	01810	00420	.00610	-02680	.04740
+25.0	15960	09900	03840	00810	01400	01550	01220	01180	00830	02930	00100	.05550	.11210
+30.0	.07750	.04040	.00320	01530	01720	02010	01080	00540	.01580	.00910	.00440	00510	01460
+35,0	.30910	.19300	.04880	00990	02350	03670	02570	02270	.00140	00250	00550	.22770	.30090
+40.0	.25320	.19710	.03770	00980	00330	02970	04280	00550	00480	.00220	.01620	.22160	.28130
+45.0	.22530	.16210	.04330	07310	08450	05280	-,06980	10240	06040	05170	.07150	.18610	,25340
+50.0	.12380	. C4650	.00250	06890	15310	09640	08960	09720	13040	04710	03840	.02290	.04590
+55.0	04200	13560	08980	~.05460	16630	14020	-,12000	-,16090	-,146.50	07860	06290	16740	11380
+60.0	21750	27310	30760	28180	25710	-,21130	16090	15360	20850	22060	29990	27470	24590
+70.0	20060	.27540	32340	29800	30540	26030	26610	-,28400	32720	31040	33290	30380	23300
+80.0	45360	47650	47210	45820	47250	44510	42200	45250	47710	45650	-,47690	47890	47520
+90.0	60570	60360	59740	58860	59780	58780	58490	59800	597.50	60010	59120	59100	-, 59160

TABLE IV. - Concluded

(i) C _{mq} and	$\Delta C_{mq,lef}$
α, deg	с _{мq}	∆ ^C m _q , lef
$ \begin{array}{r} -10.0 \\ -5.0 \\ 0.0 \\ +5.0 \\ +10.0 \\ +20.0 \\ +25.0 \\ +25.0 \\ \end{array} $	-6.8400 -3.4200 -5.4400 -5.4500 -6.7000 -6.7000 -5.6900 -6.6300	$ \begin{array}{r}3670 \\ 2.8800 \\ .2500 \\2100 \\ .3600 \\ -1.2600 \\ -2.5100 \\ .2600 \\ -2.5100 \\ .2600 \\ -2.5100 \\ .2600 \\ -2.5100 \\ .2600 \\ -2.5100 \\ .2600 \\$
$ \begin{array}{r} +30.0 \\ +35.0 \\ +40.0 \\ +45.0 \\ +55.0 \\ +55.0 \\ +60.0 \\ +70.0 \\ +80.0 \\ +90.0 \\ \end{array} $	$\begin{array}{r} -7.9700 \\ -9.3800 \\ -11.2000 \\ -13.3000 \\ -13.4000 \\ -7.1000 \\ -7.1000 \\ -7.7300 \\ 6.8200 \\ -5.6000 \\ -4.0400 \end{array}$	$\begin{array}{c} -1.6600 \\ -1.7200 \\ -1.2000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ \end{array}$

•

.

:

TABLE V.- Y-AXIS FORCE COEFFICIENT DATA USED IN SIMULATION

[All data are for δ_{lef} = 25° unless otherwise indicated]

(a) C_Y

				•••••			BETA						
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15-0	+20.0	+30.0	+40.0
-10.0	.73650	• 55080	.36510	.27230	.18680	.07260	00170	07250	17260	27720	35630	51460	67280
- 5.0	.75640	. 58 4 4 0	•41230	.32630	.21250	.10510	00410	10030	21560	31800	41860	61980	82100
0.0	.86330	•65710	.45090	.34780	.22780	.11180	00380	10510	23600	33980	44680	66090	87500
+ 5.0	.92810	.69860	.46910	.35430	.23940	.11530	00070	10440	22270	35680	46060	66840	87610
+10.0	.91420	.69660	.47900	.37020	.25790	.11760	.00810	09720	23790	35140	44850	64260	83680
+15.0	.76670	.60670	.44670	.36670	.24680	.11940	00240	09690	23340	35360	39010	46320	53630
+20.0	.79480	.60070	•40660	. 30 950	.21440	• 10 740	.00560	09080	21920	26703	29410	34840	40270
+25.0	.74870	. 55050	•35240	.25330	.21310	.11470	.00100	10140	18670	16160	25000	42680	60360
+30.0	.35470	.30910	.26350	.24070	.18700	.11580	.01310	07060	10760	13710	24340	45620	66890
+35.0	.60510	.35210	.20900	.15130	•14350	.10910	.03670	01900	03520	15050	26610	32450	59010
+40.0	.58390	.35860	.17890	.09470	.02670	.11260	.03610	05110	17710	21060	18650	35310	53820
+45.0	.50740	.32,860	<u>•15370</u>	.07810	.01020	•02230	04520	18580	18120	09010	15790	30390	45160
+50=0	.43300	.30110	.19570	.14490	.07860	.06 720	00450	08590	09770	16010	18940	31110	43890
+55.0	.45260	•31030	.19190	.14670	.12530	.08430	.00570	05840	13990	18700	21700	33140	45430
+60.0	.42150	.31750	.20110	.17320	.11770	.08680	00410	09870	14030	17220	23800	34550	44220
+70.0	.46320	.34150	.23700	.18450	.12100	• 07450	00500	07600	13520	20160	25260	36590	47860
+80.0	•52620	• 37 730	.23250	.18040	.11610	.06220	00470	07220	12960	20000	25190	38930	53670
+90.0	.57550	, 38870	.22710	.16020	.10740	.05650	01330	07330	12390	18560	25390	39980	-,58340

......

63

 \overline{f}^{*} \overline{f}^{*}

(b) $\Delta C_{Y,\delta a=200}$

BETA

	-43.0	-30.0	-23.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	02615	01610	00610	00110	.01085	.01010	.01110	.00885	.01390	00540	02120	05270	08420
- 5.0	04405	02910	01415	00665	.01620	.01730	.01590	.01105	.02560	00345	01720	04465	07210
0.0	04055	02690	01320	00635	.02365	.C1750	.01635	.01520	.01310	00135	02415	06980	11540
+ 5.0	06590	03945	01300	• 00 0 2 0	. 01820	.02135	.01265	.01545	.00925	00685	01420	02890	04365
+10.0	13685	07903	02110	.00785	.01065	.01630	.00205	.01460	.01285	-,00525	04105	11255	18410
+15.0	13000	07975	02960	00450	.02160	.01860	.01535	.01145	.00735	00095	04745	-,14050	23350
+20.0	04125	03085	02045	-,01525	.00035	.00415	00190	.00240	00710	02350	02810	-,03735	04655
+25.0	05050	03475	01910	01125	00630	00440	01135	00590	01350	00580	01805	04265	06730
+30.0	02980	02160	01340	00925	01100	01015	00725	00800	01385	00825	01095	01640	02180
+35.0	11335	07715	04095	02285	02450	01270	01030	00980	01740	02375	02135	01655	01180
+40.0	02330	03445	02810	01815	00775	01690	01555	01185	02165	02535	05200	04800	03115
+45.0	00755	02665	02975	03340	01535	02725	02225	02535	02905	03580	03235	02995	01225
+50.0	.00155	00740	03235	04585	03395	03760	04415	03895	02465	-,03515	02415	01090	00705
+55.0	.00860	00280	01500	02535	04355	04475	03715	03715	03595	02175	01175	00920	01595
+60.0	00295	01085	01290	01420	02550	03050	04185	02650	02235	02540	01460	01550	00480
+70.0	.00165	00490	01855	02145	02065	04165	04175	03460	02775	02475	02215	00965	00710
+80.0	00195	00095	01390	01855	01300	01010	00130	01165	01440	01805	02235	00620	00460
+90.0	00350	.00510	01010	01555	00830	.00040	00415	00380	00380	01065	00240	.00095	00020

(c) $\Delta C_{Y,\delta_a=20^{\circ},lef}$

2	-	Ŧ	
D	Ε.		Α

							DETA						
	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
ALPHA		· · · · -											
-10.0	05860	03695	01525	00435	.00390	.00290	.00575	00200	00835	00200	00065	.00205	.00470
- 5.0	07245	04090	00935	.00635	.00345	00040	00385	.00875	01200	01135	00365	.01170	.02700
0.0	05390	03240	01100	00030	01015	00215	00770	00555	00025	00245	00225	00190	00155
+ 5.0	06575	04025	01470	00190	00540	00890	00720	.00485	.00255	.00195	01475	04825	08165
+10.0	00985	00950	00920	00905	00410	01095	.00035	00340	01310	00115	.00675	.02230	.03790
+15.0	.01505	.01075	.00650	.00435	01220	01130	02550	00005	00060	.00220	.03680	.10620	.17550
+20.0	.07160	.04440	.01720	.00360	.00405	.00160	.00560	•00900	.01290	.02110	.01650	.00735	00180
+25.0	00300	.00035	.00385	.00555	.01270	.00770	.01260	.00870	.01385	.00395	.01460	.03615	.05770
+30.0	09215	05590	01960	00150	.00025	.00770	.00400	.00550	.00855	00710	.00595	•03210	.05820
+35.0	•08690	.04725	.00755	01230	• 00320	00410	00925	01125	01490	00180	00590	01405	02215
+40.0	00175	• 00 335	00205	00955	01140	01020	01360	01085	00020	00820	.06225	.01430	00735
+45.0	00900	.00850	00235	00810	00850	00520	01620	00475	01535	00035	00315	.00560	00160
+50.0	01345	00240	00135	.00740	00545	00585	.00360	01045	01380	00315	•00665	00175	.01020
+55.0	00255	00935	00855	.00085	.00375	.01405	.00295	00625	00550	00930	00985	00050	.01635
+60.0	00370	.00160	01330	00725	.00070	.00100	00165	00620	00770	00360	00930	00045	.00045
+70.0	00640	03445	00130	.00770	00655	.00165	00195	00335	.00090	00130	00240	.00035	.00440
+80.0	01385	00955	30475	.00570	00275	01115	00980	00470	00315	00400	00020	.00055	00925
+90.0	01080	00990	00335	.00485	.00340	00450	00050	00615	00200	00285	00830	00630	01035

(d) $\Delta C_{Y,\delta_D=50}$

							BETA		·				<u></u> .
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5+0	+10.0	+15=0	+20_0	+30.0	+40.0
							•						
-10.0	.01655	.01085	.00510	.00225	.01045	. 00.840	.01210	+01200	.00600	.01050	.00050	01970	03980
- 5.0	03150	01655	00155	.00595	.00705	.00490	.00230	.00435	.01490	.00050	.00765	.02190	.03620
0.0	01000	00570	00145	,00070	.00375	.00370	.01290	.00835	•C0515	.00705	.00780	.00930	.01085
+ 5.0	06930	03815	00695	.00865	.00860	.01115	.01175	.00470	00230	.00470	.00610	.00895	.01180
+10.0	00035	.00190	.00420	.00530	.01040	.01570	.01500	.01005	.00885	.01490	.00685	00930	02545
+15+0	05635	03060	00490	.00800	.01385	.01105	.00940	.01380	.01190	.00010	00610	01850	03090
+20.0	00020	.0240	.00510	.00645	00170	.00400	.00785	.01430	. 01170	.20715	.00165	00930	02020
+25.0	.00700	.00430	.00155	.00025	.00455	.0780	.00745	.01195	.C0650	.00700	+.00015	01450	02880
+30.0	03695	02440	01195	00565	00105	.00795	.01590	.00605	.00055	00490	01765	04300	06840
+35.0	01780	01255	00735	00475	00210	.00315	.00585	.00025	00025	00515	00415	00235	00045
+40.0	.00785	00060	00045	00440	01730	.00445	.00235	00130	00290	00710	00710	.00460	01235
+45.0	00600	00845	01090	00870	00795	.00025	.00340	00310	C0075	00295	00555	01385	02020
+50.0	03125	00435	00690	00485	01045	01585	01050	01045	.00095	00915	00425	01185	•00265
+55.0	00500	01400	01520	01230	01190	01320	01605	01380	00830	00505	01495	01145	00510
+60.0	.00080	01650	01445	01060	.00160	00395	02250	00780	00105	00265	00910	01215	.00435
+70.0	.00010	00835	01290	00620	00365	00570	01075	.00080	00115	00495	01265	01390	00840
+80.0	01030	00925	00465	01005	00250	00580	00745	00585	00360	00915	00915	00600	01055
+90.0	00695	00590	00140	00205	.00120	00030	.00300	-,00045	00340	00475	00500	.00225	01085

.

_

(e) $\Delta C_{Y,\delta r=300}$

							BETA						
	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
ALPHA		<u> </u>						· · ·					
-10.0	.03275	.05120	.06970	.07890	.09390	.10680	.09710	.10770	. C8690	.07480	.05225	.00710	03800
- 5.0	01910	.02305	.06525	.08630	.09895	.11120	•10205	.10265	.08725	.07825	.05795	.01730	02335
0.0	.00940	.03895	•06850	.08330	.09710	.10860	.10090	.09920	.09490	.08080	.06660	.03810	.00970
+ 5.0	.01465	.04250	.07035	.08425	.10200	.10605	.10195	.09330	.08190	.07755	.06145	.02905	00330
+10.0	.02510	• 04 920	•07335	.08540	.10005	.11110	.09645	.09955	.10060	.08345	.04750	02445	09640
+15.0	.01810	.04150	.06485	.07655	.09705	.10815	.10950	.11025	.10080	.07035	.04835	.00425	0398C
+20.0	.06580	.05990	.05400	.05110	.08330	.10260	.10240	.10600	.08220	•04230	.05340	.07550	.09770
+25.0	.01120	.02595	•04065	.04805	.07735	.11150	.10290	.10425	.07180	.03965	.04865	.06665	.08470
+30.0	.05715	.05480	.05250	.05135	.04750	.09695	•10485	.09120	. 05275	.04190	.03660	•02605	.01550
+35.0	00960	.01075	.03105	•04125	•06040	.09150	.09230	.06810	.05905	.02170	.03110	.04990	.06865
+40.0	.02815	.03335	.02770	.03260	.04560	.05760	.07595	.05745	.04475	.03085	.04335	.02405	.05330
+45.0	.03795	.00235	00215	.01430	.03300	.03890	.03910	.03055	.03015	.01300	.01965	.01430	.03095
+50.0	.02500	.00610	.00490	.01155	.01905	.01535	.01620	.01470	.00610	.00675	•C1025	.00540	.0280
+55.0	.00620	.00175	.00705	.00790	.01450	.00855	.00420	.01020	.00815	.00170	.01835	.00380	.00560
+60.0	.01155	.00625	.01075	.00855	.00575	.00475	.00575	.01140	.00985	.00555	.00725	.00425	.00635
+70.0	.00135	.00575	.00030	.00770	.00720	00130	.01310	.00075	.01020	.00410	.00500	.00805	.60225
+80.0	.00890	.00665	.00655	.01120	•00555	.00950	.01175	.01330	.01075	.00735	.00320	•00395	.CO810
+90.0	.01220	.01035	.00930	.01195	.01545	• 00580	.01390	.00645	.00935	.01235	.00515	.00670	.C0575

.

TABLE V.- Concluded

(f) C_{Y_p} , $\Delta C_{Y_p,lef}$, C_{Y_r} , and $\Delta C_{Y_r,lef}$

α, deg	C _{Yp}	$\Delta C_{Y_{p, lef}}$	c _{Yr}	∆CY _{r,} lef
-10.0	•0333	1410	4400	5580
- 5.0	1770	• 0 6 9 0	1.0500	1980
0.0	.0055	1970	.9810	1070
+ 5.0	.0679	• 0601	.9390	.0270
+10.0	3100	1210	9990	0850
+15.0	.2340	0520	.9810	0460
+20.0	.3440	.0750	8190	.3310
+25.0	.3620	.1060	4830	2150
+30.0	.6110	0770	5900	.4300
+35.0	. 5290	6420	1.2700	0600
+40.0	2980	2550	4930	3740
+45.0	-2.2700	1280	-1.0400	1870
+50.0	.9710	0.0000	-1.2100	0.0000
+55.0	1.0200	0.0000	-1.5800	0.0000
+60.0	2.9000	0.0000	-1.3700	0.0000
+70.0	.4510	0.0000	0259	0.0000
+80.0	2940	0.0000	1270	0.0000
+90.0	2610	0.0000	.1930	0.000

.

TABLE VI.- YAWING-MOMENT COEFFICIENT DATA USED IN SIMULATION

[All data are for $\delta_{lef} = 25^{\circ}$ unless otherwise indicated]

	-						BETA			•	<u> </u>		
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	± 5.0	+10-0	+15.0	+20-0	+30+0	+40.0
-10.0	10580	08500	06410	05360	03890	01300	.00140	.01770	.03840	.05770	.06680	.08490	-10300
- 5.0	13070	10430	07790	06480	04370	01870	.00210	.02100	.04680	.06550	.08150	.11340	.14530
0.0	15740	12210	08670	06900	04880	02160	.00100	.02160	.05190	.06890	.08730	.12400	,16070
+ 5.0	16720	12880	09030	07100	05260	02500	00050	.02210	. 04850	.07030	.08710	.12050	.15390
+10.0	15690	12450	09200	07580	05860	02800	00340	.02040	.05160	.06950	.08883	.12730	.16580
+15.0	08280	08080	07890	07790	05800	02800	00180	.01800	C4850	.07370	.07820	.08710	.09600
+20.0	09040	07590	06130	-,05400	04400	02160	00410	.01240	• 04020	.05060	.06220	.08520	.10830
+25.0	10370	07140	03900	02290	03360	02050	00250		.03470	.00770	.03350	.08510	.13670
+30.0	19270	10760	02240	. 02 02 0	.00230	.00150	.00670	.01720	~.01630	.00250	.00790	.01880	.02970
+35.0	09180	04000	01760	.02840	. 04 900	.03400	.02210	.00070	02820	04890	06130	.03820	.06800
+40.0	07720	03610	.01470	.02870	• 04420	• 03240	.01130	02260	06360	08720	03700	.02680	.05610
+45.0	046 80	00260	.01190	.03820	.03470	.01380	01170	05650	06350	04770	00820	.00400	.02620
+50.0	03040	02030	01060	.00400	.01990	• 01 06 0	00310	02140	01830	00310	.01120	.01580	.01710
+55.0	02690	00900	02120	02930	,00570	.00320	00320	00340	.00410	.00560	.00790	00650	.01920
+60.0	02030	.00 350	.00200	00970	02860	00900	.00250	01010	.0104C	.00640	01200	01620	.00730
+70.0	•00580	.02250	.02190	.01660	.00840	00650	00090	00170	00920	01210	01630	02260	01150
+80.0	02430	.01080	.01770	• 00 99 0	.00970	.00360	00050	00290	0720	00700	01490	01290	.02310
+90.0	05130	01370	.00780	.00600	.00200	.00190	.00160	.0005 0	00090	.00030	00450	.00890	.04810

(a) C_n

(b) $\Delta C_{n,\delta h=-250}$

R I	FI	r 8

									~				
Διρη	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15+0	+20.0	+30.0	+40.0
-10.0	.00430	.00410	.00380	.00360	.00410	.00060	.00070	00370	02440	00120	00110	00080	00050
- 5.0	01200	03620	00050	.00250	.00470	.00200	00070	00060	00030	.00080	.00200	.00450	.00700
0.0	01070	03500	.00060	.00340	.00440	.00210	00070	.00020	00240	.00060	.00030	00010	00040
+ 5.0	00450	00060	.00320	.00510	.00270	.00430	00060	00070	.00110	00380	00110	.00450	.01.000
+10.0	.00410	.03550	.00690	.00760	.00730	.00050	.00070	.00230	00370	00510	00140	.00630	.01400
+15.0	02340	01100	.00160	.00780	.00390	.00430	.00220	.00150	00290	00910	.00260	.02600	.04950
+20.0	00300	00020	.00250	.00390	.00830	.00410	.00150	00120	01020	01090	00280	.01370	.03010
+25.0	. 32400	• 01760	.01110	.00800	.01140	.00810	0.00000	00640	01190	00330	.00060	.00830	.01610
+30.0	.03080	.02260	•01440	.01030	.02050	• 01 02 0	.00010	01460	01340	00910	-,01030	01280	01540
+35.0	14860	08770	.00260	.01300	.01300	.00480	00650	01640	02170	01100	01600	15020	21480
+40.0	.02910	.00150	0.00000	00060	.03460	~:00880	01190	00680	00190	00020	06300	00940	01.290
+45.0	01480	00760	.03230	.01040	.00860	00140	.00510	.02310	.00190	03880	03530	.00240	.02400
+50.0	01950	.00440	00240	.00410	.00760	.00760	.00110	00370	02290	01080	-,00270	00630	.02680
+55.0	00300	.00430	.02050	.00510	01740	.00350	.00270	00900	00220	.00020	01850	00630	.01090
+60.0	01360	.01580	•00480	.01100	.02700	.00990	00250	00820	02270	01320	00990	00690	01390
+70.0	01240	00320	00390	00010	.00150	.00820	.00060	00100	00300	00660	-,00210	.00320	.01860
+80.0	.00090	00030	00960	00820	00470	00030	00130	00440	.00080	.00420	.00680	.00050	00520
+90.0	.02330	.00770	00430	00260	.00230	00020	00050	00560	00520	.00110	.00340	01190	02280

(c) $\Delta C_{n,\delta_h=250}$

										-			
	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20_0	+30-0	+40.0
-10.0	.03440	.02130	.00310	.00140	.00400	00030	.00080	.00240	.00430	00020	00530	01540	02560
- 5.0	•01740	.01110	.00480	.00170	00040	00.080	.00050	.00270	.00300	.00370	00410	01970	~.03530
0.0	.01970	•C1220	.00470	• 00 09 0	00400	00340	00100	.00310	.00440	.00400	00250	01560	02860
+ 5.0	.02470	.01520	.00550	.00070	00230	00170	.00100	.00190	.00520	.00070	00280	00970	01650
+10.0	.00810	.00670	•00530	• 00470	.00400	.00270	.00140	.00380	.00230	.00120	00360	01320	02280
+15.0	.01260	.00870	.00490	.00300	.00270	• 00 080	00070	• 00 4 4 0	.00390	00050	00630	01780	02930
+20.0	.03980	•02320	.00640	00200	.00010	00170	00120	.00410	00210	.00310	00530		03880
+25.0	•05650	.03180	.00690	00540	00070	00190	00160	.00270	.00440	•00980	.00020	01910	
+30.0	•03920 ••07700	•02300 -•05090	.00670	00150	• 00030	00020	.00150	00490	00220	.00250	00790	02860	26880
+40.0	.04040	.03710	00940	01060	00780	01810	01160	00500	.00190	.00620	05320	01060	~.03120
+45.0	.01100	01480	.01330	00660	.00060	00260	.00860	.02470	00990	03160	03030	.01100	00370
+50.0	.00510	.01140	00290	.00070	. 00620	.01110	.00060	00370	01100	.00500	.00600	00990	00620
+55.0	.01000	.00710	.00580	00680	02880	.00520	00170	00840	00030	.01730	00860	00590	01330
+60.0	.01430	.01550	00430	.00300	00930	.00030	00170	.00270	00710	.00670	.00130	00710	03400
+ 70.0	02360	01430	00360	00050	00140	.00770	00060	00970	.00090	00370	00510	.01230	.02780
+80.0	03300	02340	00920	00350	00650	00100	00130	00350	.00270	•00050	.00500	.01380	.02880
+90.0	01800	01010	00720	00440	00290	00280	00380	.00010	.00020	.00300	.00050	.00530	.02070

TABLE VI. - Continued

(d) $\Delta C_{n,lef}$

ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
	· · · · · · · · · · · · · · · · · · ·												
-10.0	01250	01060	00890	00800	01050	00910	00050	.00680	.01060	.01050	.01160	.01400	01630
- 5.0	00500	00450	00290	00200	00560	00240	00120	.00400	.005 20	.00420	.00390	.00330	.00280
0.0	•01190	.00680	.00160	00110	00200	00010	00090	.00070	00040	.00200	.00070	00170	00410
+ 5.0	00030	.00080	.00170	.00210	.00330	.00120	.00030	00050	.00140	00050	.00230	.00810	.01390
+10.0	.00030	.00220	.00400	.00490	.00410	.00310	.00210	.00200	00120	-,00100	00220	00450	00680
+15.0	01460	00620	•00230	• 00650	.00360	00040	.00050	.00200	.00240	00540	•00320	.02040	.03760
+20.0	.02390	.02330	.02250	.02210	.00240	00020	00010	.00090	00430	02340	-,02690	03370	04070
+25.0	.04540	.03720	.02880	•02470	.02900	.00730	.00040	00670	03510	00450	01110	02410	03710
+30.0	00610	.00 300	.01200	.01650	.03040	.00990	.00250	02180	02300	00040	03500	10420	17340
+35.0	05680	03730	.01150	.00120	00500	0-00000	00560	00770	02400	.00270	00610	14810	22030
+40.0	.02300	.02450	.00040	00440	01620	01610	01400	01020	• • 01300	.01470	05050	-,02830	02150
+45.0	.01890	01870	.01010	01240	00620	00560	.00620	.02140	.00340	02310	03290	.00990	00410
+50.0	.00890	.00680	01050	00710	00130	.00610	00200	00350	.00070	.00890	00100	00440	00560
+55.0	.00470	.00210	.00500	00540	03290	00360	.00070	00870	00240	.00170	00790	00510	00990
+60.0	•00260	• 01 380	00280	0098.0	00030	00850	.00240	00290	01100	01160	.00160	00600	02660
+70.0	00780	00270	00310	00640	00250	• 00550	00480	00310	.00310	0.00000	-:00280	.00070	.00830
+80.0	00340	00140	00390	00370	00330	00360	.00010	00150	• 000 50	.00040	00040	•00540	.00170
+90.0	00250	00 250	00480	00290	00150	00230	00050	00310	00100	.00080	.00240	.00520	.00010

72

ł

TABLE VI. - Continued

(e) $\Delta C_{n,\delta_a=200}$

							BETA					<u>.</u>	
ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5+0	+10.0	+15+0	+20.0	+30.0	+40.0
-10.0	.02470	.01335	.00205	00355	00835	00 750	00640	00725	00795	00130	-00425	.01530	.02630
- 5.0	.02110	.01235	•00360	00075	00860	00955	00950	00845	01015	00035	.00515	.01610	.02710
0.0	.02050	.01140	.00230	00225	01115	01025	00935	00940	00865	00180	.00570	.02080	.03585
+ 5.0	.02525	.01400	.00270	00290	~.00895	01035	00795	00870	00605	00045	.00490	.01560	.02625
+10.0	.03920	.02225	.00525	00325	00615	00845	00465	00775	00615	00065	.01055	.03290	.05525
+15.0	.04625	.02790	•00960	.00040	00835	00860	00685	-,00630	00470	.00090	.01440	.04130	.06825
+20.0	.02195	.01610	.01025	.00735	.00125	00010	.00300	.00115	.00335	.00785	.00665	.00425	.00190
+25.0	.00890	.00845	.00805	.00780	.00750	.00560	.00705	.00510	.00640	00485	00030	.00885	.01805
+30.0	00040	.00170	.00370	.00480	.00390	• 00 5 0 0	.00635	.00605	.00725	00335	00865	01925	02985
+35.0	-03035	.01975	.00915	.00385	00005	.00405	.00330	.00165	.00290	00165	.00185	.00885	.01580
+40.0	.01020	.01025	•00465	.00430	.00315	.00370	.00295	.00375	00270	.00275	-,02005	.00970	.00830
+45.0	.00335	• 00 4 8 0	.00990	.01140	.00405	.00465	.00390	.00760	.00340	.00535	.01315	-00900	.00490
+50.0	.00020	.00335	.01120	.01255	.00710	.00885	.00285	.00775	.02065	.00590	.01185	.00280	.00290
+55.0	.00050	.00160	.00550	.00905	.01235	.01120	.01000	.01230	.01230	.00975	.00670	.00215	.00190
+60.0	.00160	.00575	.00625	.00755	.00525	.01800	.01690	.01925	.01090	.01240	.01020	.00625	00035
+70.0	.00535	.00840	.01130	.01260	.01385	.02435	.02305	.01870	•01700	.01375	.01230	.00675	.00680
+80.0	.00845	.00530	.01165	.01290	.01045	.00835	.00735	.00895	.01185	.01255	.01085	.00780	.00905
+90.0	.00870	.00490	.01080	.01380	.01080	.00830	.00780	.01030	.01055	.01155	.01020	.00485	.00840

73

TABLE VI. - Continued.

(f) $\Delta C_{n,\delta_a=20^{\circ},lef}$

в	FT	Δ

ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5+0	+10+0	+15.0	+ 20 • 0	+30+0	+40_0
-10.0	.00545	.00415	.00285	.00215	00085	00145	00330	00050	.00150	.00165	.00120	.00035	00050
- 5.0	.01370	.00785	.00200	00090	00145	00095	.00040	00245	.00215	.00110	.00115	.00130	.00150
0.0	.01030	.00680	.00330	.00155	.00285	.00100	.00240	.00120	.00065	.00155	.00200	.00290	.00385
+ 5.0	.01040	.00670	.00310	.00120	.00195	.00285	.00215	00025	.00010	.00065	.00325	.00855	.01385
+10.0	•00595	.00460	.00325	.00260	.00235		.00150	.00260	.00410	.00135	00065	00450	00840
+15.0	01420	-,00810	00205	.00100	.00425	.00505	.00780	.00240	.00165	08965	00865	02460	04060
+20.0	03915	02535	01160	00480	-,00530	00390	00455	00570	00665	00870	00750	00505	00255
+25.0	01140	01050	00960	00915	01395	00930	00900	00770	01080	00005	00400	01200	01995
+30.0	•0351C	•C1880	.00260	00560	00505	00765	00720	00700	00670	.00305	.01250	.03135	.05030
+35.0	01870	01045	00215	. 00 20 0	00010	00440	00545	00175	.00330	.00765	.00300	00620	01535
+40.0	00045	00560	00235	.00010	.00090	00115	00285	00035	.00390	.00200	.04315	00045	.00280
+45.0	00110	00210	00440	00150	.00230	00045	.00030	00090	00080	.00130	00290	00710	00375
+50.0	,00345	00090	00290	.00015	.00205	00080	.00555	.00035	01310	.00090	00525	.00050	00405
+55.0	00295	00030	00165	0.00000	.00040	.00515	.00300	00180	00295	.00640	.00035	.00400	00180
+60.0	00045	00130	•00220	-,00165	.00120	00825	.00250	00065	.00330	.00105	00205	00060	00130
+70.0	00210	00150	00090	00050	00025	00275	.00080	.00150	00205	00160	00095	.00055	00255 +
+80.0	00105	.00045	00115	0.00000	00045	-00210	.00250	0.00000	00075	+00025	00075	00210	.00015
+90.0	.00195	.00100	00190	00145	00010	00095	.00055	00160	00020	0.00000	0.00000	.00360	.00130

TABLE VI. - Continued

(g) $\Delta C_{n,\delta}D^{=50}$

DEIA	D I	-	Ŧ		
	 D.	Ε.	L	А.	

	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	_0.0	+ 5.0	+10.0	+15.0	+20.0	+30-0	+40.0
ALPHA													
-10.0	-,00115	00270		00505	00605	00580	00700	00670	00635	00605	00400	.00010	.00425
- 5.0	.00730	.00235	00265	00510	00580	00560	00500	00520	00670	00405	00405	00395	~.00385
0.0	.00180	00030	00245	00350	00450	00490	00660	00565	00415	00495	00345	00045	.00255
+ 5.0	.01130	.00470	00180	00515	00550	00600	00630	00495	00365	00445	00400	00315	00230
+10.0	.00110	00140	00385	00505	00600	00730	00685	00570	00565	00615	00425	00040	.00335
+15.0	.00810	.00300	00205	00465	00705	00580	00485	00655	00555	00235	0.00000	.00465	.00925
+20.0	.00610	.00200	00215	00420	00205	00360	00365	00540	00520	00320	00165	.00145	.00455
+25.0	.00055	00015	00080	00110	00335	00380	00280	00350	00150	00325	.00005	,00655	.01310
+30.0	01085	00420	.00245	.00580	00050	00175	00170	00200	.00095	•00455	00230	01595	02955
+35.0	.01225	.00680	.00135	00135	.00240	.00105	.00050	.00420	.00105	00535	.00450	•02420	.04390
+40.0	00630	.00335	.00245	.00105	•00280	.00545	.00315	.00700	.00775	.00230	.00250	.00125	.00320
+45.0	.00385	.00225	.00515	.00665	.00400	.00480	•00540	.00645	.00650	.00615	.00440	.00680	.00505
+50.0	.00735	•00285	.00615	.00535	.00855	.00695	•00630	.00890	.01235	.00825	.00575	•00455	.00295
+55.0	.00140	• 00 705	.00625	• 00680	.00565	.00680	.00925	.00680	.00745	.00590	.00655	.00745	.00195
+60.0	.00315	.00650	.00570	.00495	.00745	.00765	.01450	.00965	.00470	.00380	.00485	.00585	.00570
+70.0	.00190	.00460	.00760	.00565	.00460	.00360	.00620	.00715	.00460	.00650	.00605	.00680	.00640
+80.0	.00575	.00830	•00490	.00530	.00400	.00430	.00515	.00475	.00495	.00585	.00580	.00715	.00565
+90.0	.00735	•00425	.00370	.00405	.00475	•00430	•00410	.00405	.00450	.00400	.00175	.00580	.00730

| |----

TABLE VI. - Continued

(h) $\Delta C_{n,\delta r=300}$

ALPHA	-40.0	-30.0	-2).C	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	-,00995	02030	03065	03585	04415	04975	04780	04990	04215	03530	02795	01330	.00135
- 5.0	.00455	01295	03045	03915	04530	05055	04765	04835	04170	03625	02935	01555	00180
0.0	0340	01725	03105	03800	04585	04990	04680	04710	04325	03710	03005	01585	00175
+ 5.0	01145	02180	03215	03730	04570	04910	04750	04605	04205	03710	03025	01645	00260
+10.0	00940	02050	-,03165	03730	04490	05045	04650	-,04715	04385	03895	02655	00170	.02310
+15.0	.01005	00820	02645	03555	04460	05010	04960	-,05045	04345	03330	02160	.00170	.02495
+20.0	02370	02325	02275	02250	03765	04860	04785	04915	03955	02090	02335	02820	03305
+25.0	-,01135	01455	01775	01935	03280	04970	04860	04880	03340	01600	02210	03435	04660
+30.0	00480	(0950	01415	01650	01885	04255	05000	04280	01845	01850	01125	.00325	.01775
+35.0	01570	01265	00950	00795	02190	03655	04115	02840	02700	01795	00835	.01080	.02995
+40.0	01230	01225	00480	00780	02260	02455	03650	02800	01810	01290	.02110	01010	01825
+45.0	01660	00320	00755	00070	01430	01790	01800	01080	01205	-,01015	.005.80	00405	01-395
+50.0	00900	00120	00490	00170	00470	00655	00585	03275	00595	-,00365	00410	00165	00385
+55.0	00290	00025	00910	00115	00145	00410	-,00425	00330	00280	00460	00450	00190	00190
+62.0	00365	.00090	-,00170	00130	00335	.00055	00165	00380	00250	-,00425	00475	00180	00370
+70.0	00135	00495	00210	00260	00155	00130	00520	0.0000	00305	00115	00285	00250	00255
+80.0	00360	00265	00180	00320	00425	00470	00525	00455	~.00555	-,00310	00275	00255	00580
+90.0	00145	00435	00330	00280	00325	00370	00495	00325	00220	00345	00235	00385	00305

TABLE VI.- Concluded

(i) C_{n_p} , $\Delta C_{n_p,lef}$, C_{n_r} , and $\Delta C_{n_r,lef}$

α, deg
-10.0
- 5.0
0.0
+ 5.0
+10-0

α, deg	C _{np}	∆Cn _{p, lef}	c _{nr}	^{∆C} ∩r, lef
-10.0	0006	.0615	5170	.1370
- 5.0	.0424	.0091	4610	. 0980
0.0	0075	0610	- 4140	.0370
+ 5.0	9214	.0129	3970	.0160
+10.0	0744	.0439	3730	.0070
+1,5.0	0997_	.0512	3630	.0140
+20.0	0726	0294	- 4780	1030
+25.0	0621	.0017	5820	0980
+30.0	.0184	.0584	7200	3100
+35.0	.1580	• 21 10	6370	4370
+40.0	0671	• 3920	-1.0200	1670
+45.0	3040	.1960	0762	.0840
+50.0	.4370	0.0000	5410	0.0000
+55.0	.1590	0.0000	1850	0.0000
+60.0	.5250	0.0000	1900	0.0000
+70.0	1110	0.0000	2800	0.0000
+80.0	.0895	0.0000	0311	0.0000
+90.0	• 0559	0.0000	1310	0.0000

4

TABLE VII. - Continued

(c) $\Delta C_{l,\delta_h=250}$

BETA

ALPHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+27.0	+30.0	+40.0
-10.0	00850	00230	.00390	.00690	.00220	.00040	00180	01150	C1570	01360	01830	02770	03700
- 5.0	.01430	.00870	.00310	.00020	.00130	. 20010	.00170	00950	00730	01080	01450	02190	02920
0.0	.00290	.00310	.00320	.00330	.00240	.00200	.00510	00.410	0630	00410	00830	01670	02510
+ 5.0	.01180	.00750	.00310	.00090	.00010	.00100	.00110	00170	C0750	00330	00090	.00390	.0880
+10.0	.02700	.01730	.00760	.00280	.00100	.00010	00210	.00360	.00410	.00110	.00070	00010	00100
+15.0	•01890	.01210	.00530	.00200	.00300	.00050	.00050	.00990	.00830	.00460	.00290	00050	00390
+20.0	00210	00230	00240	00250	.00100	.00080	00140	.00600	.00430	.00410	.00460	.00550	.00630
+25.0	03040	01900	00760	00180	00650	00670	.00140	.00990	.00630	.00290	.00660	.01400	.02140
+30.0	.00760	.00390	.00030	00160	01010	00500	.00040	.01150	.01140	.00620	.01590	.03520	.05450
+35.0	04390	01300	.00320	.00740	00850	.00180	.00150	.00410	.01580	00.620	.00540	.02950	.07050
+40.0	01770	00040	.00430	.00170	00050	.00320	00420	01110	.00050	.00240	01410	.00280	.00090
+45.0	.03460	01060	.00220	.00640	.00420	.00400	.00270	00930	00480	01130	00910	00050	04230
+50.0	.03100	.02420	00100	.00140	.00300	0.0000.0	00150	00050	00510	00090	01370	00910	01950
+55.0	.00090	.00100	.00010	0.00000	00760	.00600	.00840	00110	.00530	00300	00440	.00050	.00930
+60.0	00360	00200	.00150	00430	00160	.00040	00060	00390	00290	.00350	.00270	0.00000	.00430
+70.0	.00530	.00590	00110	.00100	00430	00060	.00170	00180	.00280	.00160	00100	00650	00790
+80.0	.00330	00180	00150	.00110	00190	.00270	.00100	.00530	.C0020	00100	.00230	.00180	0.00000
+90.0	01830	00980	00230	00050	00120	.00130	.00060	00140	.00100	.00020	.00170	.01100	.00640

(d) $\Delta C_{l,lef}$

				<u> </u>			BETA						
ALPHA	-40.0	-30.0	-20.0	15.0	-10-0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	02250	01600	00940	00620	00870	00460	00170	00890	005.00	00080	00460	01240	02000
- 5.0	01320	01230	01130	01100	00930	00810	.00290	00480	.00380	00180	.00150	· .00810	.01470
0.0	.02030	.01050	.00060	00430	00080	00230	00020	00490	00310	00190	00700	01730	02760
+ 5.0	.01830	.01320	.00810	.00550	.00350	.00480	00010	00320	00730	00560	00450	00230	00010
+10.0	.01910	.01300	.00680	. 00380	.00150	.00120	00170	.00400	.00170	.00600	00100	01480	02870
+15.0	01000	00880	00760	00700	00580	00450	00120	.01150	.01260	.00850	.01750	.03550	.05350
+20.0	.00570	01690	03950	05080	03420	01740	00150	.01780	.02920	.04260	.04600	.05280	.05950
+25.0	-,02530	03160	03790	04100	03030	01350	.00130	.01520	.03910	.05410	.04700	.03300	.01900
+30.0	11100	06950	02790	00710	01800	01010	.00220	.01570	.01520	.02120	.03540	.06400	.09250
+35.0	11360	05680	01460	.00250	.01290	.00820	00050	00500	.01520	00930	00480	.00490	.03150
+40.0	02050	02730	00860	-,01150	00100	.01170	00040	02030	01190	00700	01660	.02100	.00900
+45.0	.00080	00900	00370	00430	00110	.00720	.01130	00590	01080	01240	00150	.00120	01430
+50.0	.00670	•00480	00020	.00040	.00130	.00030	00080	.00120	.00070	.00160	01480	.00620	.00140
+55.0	00760	01080	00360	0.00000	00660	.00240	.00850	00230	.00440	00370	00180	.00990	.01550
+60.0	00740	01040	00140	00550	00390	00090	0.00000	00070	.00040	.00520	.00320	.00610	.01020
+70+0	00220	00390	00260	.00050	00060	00380	.00120	.00140	00060	.00020	.00030	.00030	00070
+80.0	00770	00850	00400	.00180	00200	0.00000	_00070	.00250	.00030	00050	.00270	00160	.00280
+90.0	01160	00670	00180	00090	.00360	.00010	00030	00150	00180	00080	.00090	00010	.00430

TABLE VII. - Continued

(e) $\Delta C_{l,\delta_a=20^\circ}$

B	Ē	т	A
D		ч.	н

A1 PHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40-0
-10.0	01915	02575	03235	03565	03170	03085	02865	02885	03060	03500	03325	02985	02635
- 5.0	03150	03250	03350	03400	03245	03395	03620	03660	03510	03550	03425	03185	02935
0.0	02770	03220	03680	03905	03970	04095	04120	03985	04125	04125	03715	02885	02055
+ 5.0	05340	04830	04315	04060	04130	04225	04685	04055	04050	04015	04170	04480	04790
+10.0	05110	04585	04065	03800	04130	04265	04535	04360	04180	03765	04060	04655	05250
+15.0	00760	02110	03460	04135	04200	04360	04750	04425	04125	04010	03455	02355	-,01260
+20.0	00410	01740	03075	03740	03845	03790	03685	03745	-,03705	03565	03515	03415	03315
+25.0	03365	03090	02820	02685	03040	03140	03405	03290	03195	02515	02405	02185	01970
+30.0	.02530	.00725	01085	01990	01975	02405	02535	02510	01945	01315	00730	.00440	.01610
+35.0	05610	03720	01835	00895	30855	01520	01745	01365	01130	₽.00860	01065	01490	01905
+40.0	01945	01260	01130	01085	01120	01040	01360	00855	00630	00710	01250	01870	01600
+45.0	00865	00645	01015	01070	00910	01135	-+00905	00900	00840	00935	00950	00835	00880
+50.0	00465	01150	00555	01005	00970	00890	00950	01075	00650	01080	01135	00965	00780
+55.0	00580	00720	00780	00820	00865	00870	00890	00915	01000	00880	00690	00765	01065
+60.0	00965	00750	00715	00660	00850	00850	00840	00815	00825	00815	00635	00620	00975
+70.0	00790	00195	00360	00595	00945	01300	01150	01265	01255	00730	00430	00345	00770
+80.0	00445	00430	00300	00450	00445	00390	00180	00390	00420	00425	00420	00635	00565
+90.0	00200	.00060	00185	00155	00290	00155	00230	00095	00165	00225	00160	00015	00390

ŧ.

(f) $\Delta C_{l,\delta_a=20^{\circ},lef}$

		• <u>•••</u> •••••••••	·····				BETA						· · · · · · · · · · · · · · · · · ·
ALPHA	-40-0	-30.0	-20+0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15+0	+20+0	+30.0	+40.0
-10.0	02355	- 01590	- 00830	00445	00590	00.830	01030	01145	00895	00555	00740	01120	01500
- 5.0	00885	01050	01210	01290	01195	01 375	00780	00840	01115	01420	01155	00620	00090
0.0	00965	00860	00740	00685	00330	00420	00415	00650	00505	00390	00575	00955	01345
+ 5.0	_01485	.00785	.00085	00265	00120	.00035	.00220	00375	00340	00215	_00055	.00595	01135_
+10.0	.00650	.00350	.00055	00105	.00280	.00160	.00125	.00390	.00165	.00080	00110	00485	00860
+15.0	02330	01180	00035	.00540	.00605	.00755	.01175	.00785	. 00505	.00685	.00125	00990	02095
+20.0	00220	.00265	.00755	.01000	.01335	.01335	.01385	.01405	.01285	.00855	.01050	.01445	.01830
+25.0	-,00470	.00340	.01155	.01560	.01650	.01375	.01460	.01415	.01770	.01130	.01160	.01225	.01290
+30.0	06110	03250	003.85	.01050	.00845	.00960	.00890	.01150	.00625	.00285	00600	02385	04165
+35.0	.01050	.00570	.00095	00140	00090	.00395	.00535	.00345	00355	00410	00170	.00320	.00805
+40.0	.00665	.00085	.00030	00050	00115	00040	.00120	00270	00155	00400	.00775	.00675	00015
+45.0	00200	00015	00075	00135	.00005	,03115	00100	.00040	.0145	.00025	00165	00295	00205
+50.0	00630	00050	00540	00030	00085	-,00025	00150	.03195	00385	00075	.00230	00275	.00085
+55.0	00230	00160	.00040	.00010	.00030	.00085	.00170	00090	00060	.00030	00155	00110	.00075
+60+0	.00185	.00145	00075	00065	.00070	00050	00135	00025	00030	00105	00135	00090	.00295
+70.0	.00085	00105	00155	.00155	•00485	.00180	.00185	.03110	• CC465	.00190	00095	.00105	.CO14C
+80.0	00040	.00005	.00075	.00185	.00080	.00095	00095	.00070	C0145	.00050	.00145	.00280	-00020
+90.0	00230	00110	00075	.00110	.00070	0.00000	00025	0125	00145	.00035	00015	00015	00190

TABLE VII. - Continued

(g) $\Delta C_{l,\delta_D=50}$

BETA

ALPHA	-40.0	-30.0	-20,0	-15,0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	01070	03850	00620	00510	00445	00660	00565	00455	0730	00440	00475	00545	00610
- 5.0	00625	00605	00585	00575	00525	00565	00605	00740	00480	00590	00700	00910	01120
0.0	00065	03315	00560	00685	00630	00700	00630	00435	00510	00675	00605	00485	00355
+ 5.0	01205	0930	00660	00525	00690	00380	00605	00545	00740	00565	00710	01000	01290
+10.0	01760	01335	00910	00700	00665	00420	00625	-,00625	00715	00535	00825	01405	01990
+15.0	00695	00670	00655	00640	00825	00555	00525	00685	00570	00535	00600	00725	00850
+20.0	.00175	00185	00550	00725	00595	00585	00565	-,00510	00530	00525	00460	00340	00225
+25.0	.00115	00125	00365	00490	00625	00535	00590	00475	00555	00130	00330	00735	01130
+30.0	.02845	.01365	00120	00855	00660	00720	00550	00580	C0650	00255	.00315	.01455	.02590
+35.0	00405	00275	00140	00070	00560	00745	00800	00850	00465	.00150	00230	00985	01740
+40.0	.01205	.00150	0.00000	00135	00105	00540	00540	00810	00385	00160	00290	.00120	00445
+45.0	0.00000	00095	00090	.00010	00095	00225	00220	.00025	00005	.00020	00110	00250	00260
+50.0	00565	.00125	00045	00130	00015	00075	00110	00270	00050	00140	00065	.00015	.00085
+55.0	.00005	00210	.00015	00115	00240	00260	00275	00285	00290	00425	00250	00060	00075
+60.0	00070	00120	00210	00155	00195	00195	00260	00195	00145	00195	00170	-,00180	.00045
+70.0	00115	.00105	00205	00250	00215	00345	00455	00570	C0600	00250	00210	00070	00375
+80.0	00430	00625	00100	00145	00055	00055	00170	00220	00105	00070	00165	00420	00470
+90.0	00695	00220	.00050	•00040	.00085	.00015	00030	.00045	00085	00090	00110	00080	00855

(h) $\Delta C_{l,\delta r=300}$

							BETA						
AL PHA	-40.0	-30.0	-20.0	-15.0	-10.0	- 5.0	0.0	+ 5.0	+10.0	+15.0	+20.0	+30.0	+40.0
-10.0	.00240	.00660	.01080	•01290	.01590	.01840	.01725	.01885	.01460	•01125	.00865	.00350	00165
- 5.0	00070	.00485	.01035	.01315	.01490	.01860	.01800	.01800	.01480	.01055	.00800	.00290	00220
0.0	00655	.00055	.00760	.01110	.01375	•01665	•01905	.01585	.01360	.01075	.00975	.00770	.00565
+ 5.0	00290	• 00 3 30	.00950	.01260	.01535	.01580	.01505	.01410	• 01265	.0.1030	.00865	.00545	.00225
+10.0	.00010	.00440	.00880	.01100	.01370	.01570	•C1455	.01645	.01450	.00805	.00865	.00985	.01105
+15.0	•00170	.00410	.00660	.00780	.01155	.01550	.01430	.01495	.01390	.00995	•00540	00360	01265
+20.0	.00370	.00495	.00625	.00685	.01000	.01280	.01365	.01365	.00910	00490	.00530	.00605	.00680
+25.0	.00030	.00190	.00345	.00425	.00665	.01400	.01300	.01225	.00600	.00335	.00530	.00920	.01310
+30.0	.02625	.01560	.00505	00025	.00075	.00910	.01245	.00830	.00095	.00455	.00325	.00055	00210
+35.0	.01320	.00835	.00350	.00110	.00600	.00760	.01065	.00600	.0965	.00465	.00150	00480	01110
+40.0	00485	.00385	.00315	.00515	.00790	.00600	.01025	.00720	.00785	.00580	.00435	.00350	.01245
+45+0	•00300	•00145	.00035	.00545	.00470	.00490	.00515	.00215	.00245	.00300	.00305	.00075	.00080
+50.0	•00220	00070	00065	.00185	.00225	.00030	.00160	.00120	.0026C	.00140	.00360	00065	00300
+55.0	00040	.00080	.00060	.00155	.00175	• 00090	.00065	.00185	00030	.00110	.00130	.00185	.00125
+60.0	.00215	.00065	.00125	.00100	.00135	.00145	.00095	.00080	.00060	.00005	.00015	.00005	•00150
+70.0	•00025	•00040	00050	.00075	•00150	00030	•00270	.00025	.00145	.00040	00085	.00040	.00065
+80.0	.00100	.00025	.00015	.00120	00010	.00065	.00025	.00150	• 000 45	.00015	00085	00020	•00280
+90.0	.00190	.00110	00025	.00115	.00255	.00005	00005	.00140	.00210	.00025	00095	.00070	00075

TABLE VII. - Concluded

	(i) C _{<i>l</i>p} , <i>l</i>	$\Delta C_{lp,lef}, C_{lr}, and$	d ∆C _{lr,lef}	
α , deg	с _{lp}	∆C _{ℓp, lef}	c _{lr}	$\Delta C_{lr, lef}$
-10.0	3660	.0060	1550	.0290
5_0	3770	0180		
0.0		1000	0024	<u> </u>
<u>+ 5.0</u>		0200	0880	0360
+10.0		0580	2050	
+15.0 +20.0	-,3880	0870	2200	.0660
+25.0	3290		3190	<u>.2010</u>
+30.0	<u>2940</u> 3170	<u>0560</u> 0820	4370	<u>.0060</u> 0680
+35.0	9010	• 3620	<u> 6800 </u>	5370
+40.0	0568	<u> </u>	4470	7870
+45.0	• 5940	•0970	3300	3940
+ 50.0	021.8	00000	0680	0.0000
+55.0	2160	0.0000	.1180	0.0000
+60.0	2500	0.0000	• 0802	0.0000
+70.0	2130	0.0000	• 0 52 9	0.0000
+80.0	2330	0.0000	• 0868	0.0000
+ 90.0	2030	0.0000	0183	0.0000

ſ

L____

TABLE VIII.- THRUST VALUES USED IN SIMULATION

I

(a) SI Units

Mach			Thrus	st in N at	altitude	in m of	_		
number	0	1524	3048	4572	6096	7620	9144	10 668	12 192
		1 1	I	T _{idle}		i 1			
0.0	4 537	3 777	3 123	2 562	2 086	1 686	1 348	1 072	841
.1	3 736	3 109	2 571	2 108	1 717	1 388	1 112	881	694
.2	3 114	2 589	2 140	1757	1 432	1 157	925	734	578
.3	2 313	1 926	1 59 2	1 308	1 063	859	68 9	547	431
.4	1 157	961	796	6 54	534	431	343	271	214
.5	0	0	0	0	0	0	0	0	0
.6									
.7									
.8									
.9									
1.0	*	1	* [*	•	1	+	1	•
				T _{mil}					
0.0	46 715	38 873	32 134	26 373	21 485	17 357	13 901	11 023	8 318
.1	46 715	39 362	32 886	27 281	22 455	18 331	14 830	11 881	9 021
.2	47 178	40 069	33 802	28 299	23 504	19 3 54	15 791	12 753	9 742
.3	49 148	41 884	35 439	29759	24 790	20 471	16 743	13 558	10 395
.4	50 612	43 357	36 871	31 106	26 026	21 583	$17 \ 726$	14 412	11 089
.5	5 2 578	45 132	38 455	32 503	27 241	22 628	18 616	15 155	11 694
.6	54 713	47 044	40 145	33 984	28 522	23 722	19 541	15 925	12 317
.7	55 9 2 3	48 348	41 466	35 270	29 73 2	24 834	20 533	16 801	13 042
.8	56 207	49 028	42 396	36 333	30 844	25 929	21 569	17 748	13 834
.9	57 208	50 349	43 895	37 894	32 392	27 397	22 922	18 958	14 830
1.0	57 867	51 524	45 381	39 540	34 073	29 038	24 456	20 351	15 969
				T _{max}	x			•	
0.0	79 178	65 883	54 460	44 705	36 413	29 421	23 558	18 682	14 096
.1	82 096	69 054	57693	47 858	39 393	32 161	26 018	20 840	15 831
.2	85 464	72 595	61 234	51 266	42 578	35 061	28 607	23 104	17 646
.3	92 038	78 435	66 367	55 73 2	46 422	38 330	31 3 56	25 390	19 465
.4	97 896	83 867	71 314	60 171	50 345	41 747	34 291	27 877	21 449
.5	105 365	90 446	77 061	65 135	54 597	45 350	37 307	30 372	23 433
.6	113 274	97 398	83 115	70 357	59 050	49 113	40 452	32 975	25 497
.7	119 751	103 53 2	88 795	75 522	63 667	53 174	43 971	35 973	27 926
.8	124 354	108 470	93 795	80 379	68 240	57 364	47 721	39 260	30 604
.9	130 911	115 222	100 445	86 718	74 121	62 693	52 4 53	43 379	33 940
1.0	136 480	121 521	107 033	93 2 52	80 362	68 480	57 680	48 001	37 659

TABLE VIII.- Concluded

(b) U.S. Customary Units

Mach		Thrust in 1b at altitude in ft of -										
number	0	5000	10 000	15 000	20 000	25 000	30 000	35 000	40 000			
		· - L		Т	idle			L				
0.0	1 020	849	702	576	469	379	303	241	189			
.1	840	699	578	474	386				156			
.2	700	582	481	395	322	260	1	1	130			
.3	520	433	358	294	239	193	155	J	97			
.4	260	216	179	147	120	97	77	61	48			
.5	0	0	0	0	0	0	0	0	0			
.6				1		1 1	1 1	1	1			
.7												
.8	1 (í í	1 1		1 1	1 . 1		1 1				
.9												
1.0	•	+	•	+	+	+	+	+	•			
	·			Т,	mil	· · · · · · · · · · ·			1			
0.0	10 502	8 739	7 224	5 929	4 830	3 902	3 125	2 478	1870			
.1	10 502	8 849	7 393	6 133	5 048	4 121	3 3 3 4	2 671	2028			
.2	10 606	9 008	7 599	6 362	5 284	4 3 5 1	3 550	2 867	2190			
.3	11 049	9 4 1 6	7 967	6 6 9 0	5 573	4 602	3 764	3 048	2337			
.4	11 378	9 747	8 289	6 993	5 851	4 8 5 2	3 985	3 240	2493			
.5	11 820	10 146	8 645	7 307	6 124	5 087	4 185	3 407	2629			
.6	12 300	10 576	9 025	7 640	6 4 1 2	5 3 3 3	4 3 9 3	3 580	2769			
.7	12 572	10 869	9 322	7 929	6 684	5 583	4 6 1 6	3 777	2932			
.8	12 636	11 022	9 531	8 168	6 934	5 829	4 849	3 990	3110			
.9	12 861	11 319	9 868	8 519	7 282	6 1 5 9	5 153	4 262	3334			
1.0	13 009	11 583	10 202	8 889	7 660	6 528	5 498	4 575	3590			
				Tm	ax							
0.0	17 800	14 811	12 243	10 050	8 186	6 6 1 4	5 296	4 200	3169			
.1	18 4 56	15 524	12 970	10 759	8 856	7 230	5849	4 685	3559			
.2	19 213	16 320	13 766	11 525	9 572	7 882	6 431	5 194	3967			
.3	20 691	17 633	14 920	12 529	10 436	8 6 1 7	7 049	5 708	4376			
.4	22 008	18 854	16 032	13 527	11 318	9 3 8 5	7 709	6 267	4822			
.5	23 687	20 333	17 324	14 643	12 274	10 195	8 3 8 7	6 828	5268			
.6	25 465	21 896	18 685	15 817	13 275	11 041	9 094	7 413	5732			
.7	26 921	23 275	19 962	16 978	14 313	11 954	9 885	8 087	6278			
.8	27 956	24 385	21 086	18 070	15 341	12 896	10 728	8 826	6880			
.9	29 430	25 903	22 581	19 495	16 663	14 094	11 792	9 7 5 2	7630			
1.0	30 682	27 319	24 062	20 964	18 066	15 395	12 967	10 791	8466			

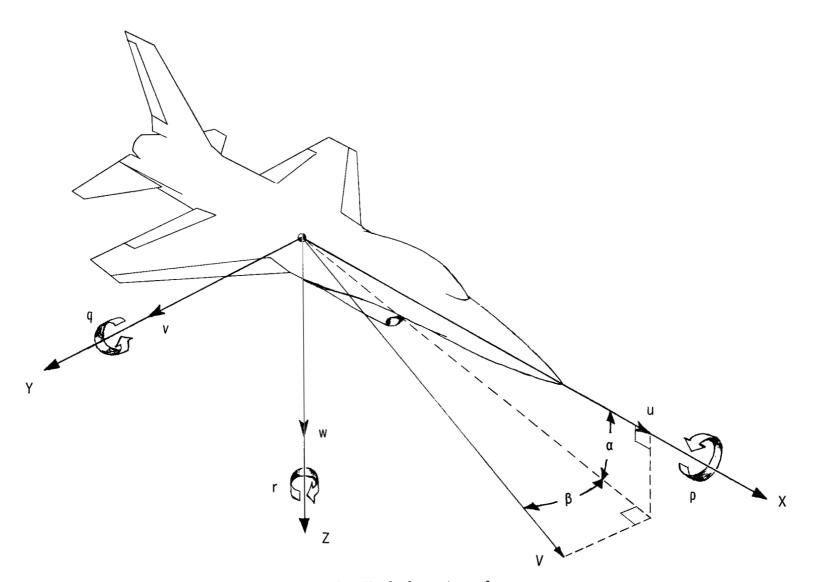


Figure 1.- The body system of axes.

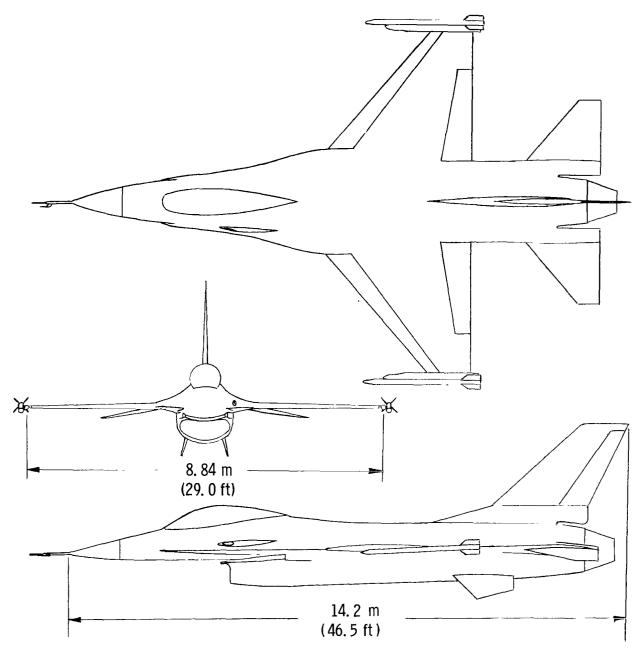


Figure 2. - Three-view sketch of airplane configuration.

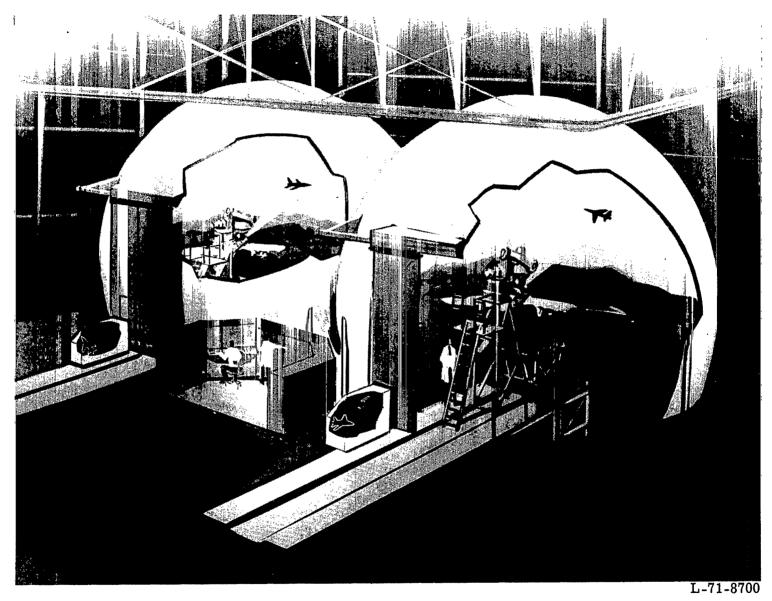
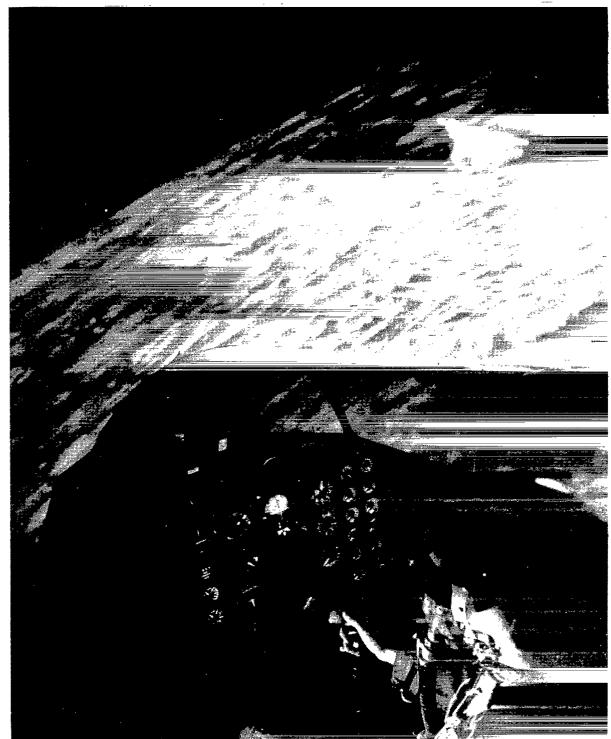



Figure 3.- General arrangement of the Langley differential maneuvering simulator (DMS) facility.

L-73-6831

Figure 4.- View of cockpit and visual display within one sphere of DMS.

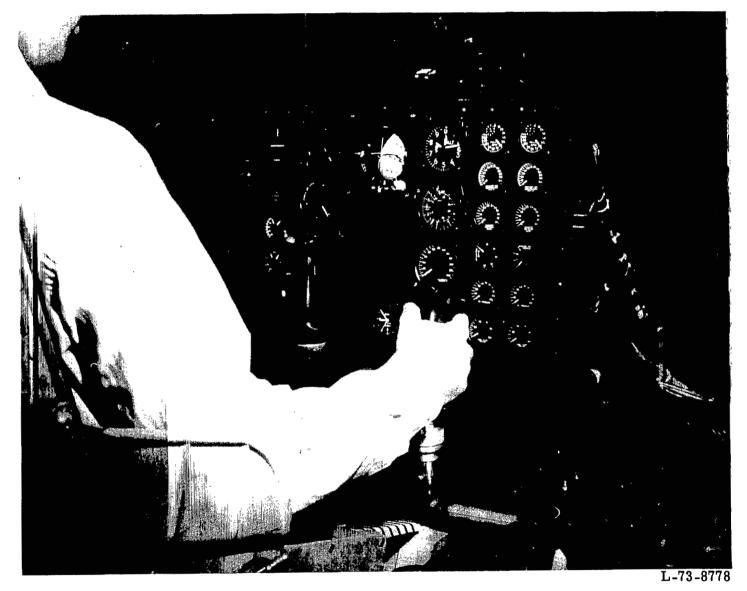
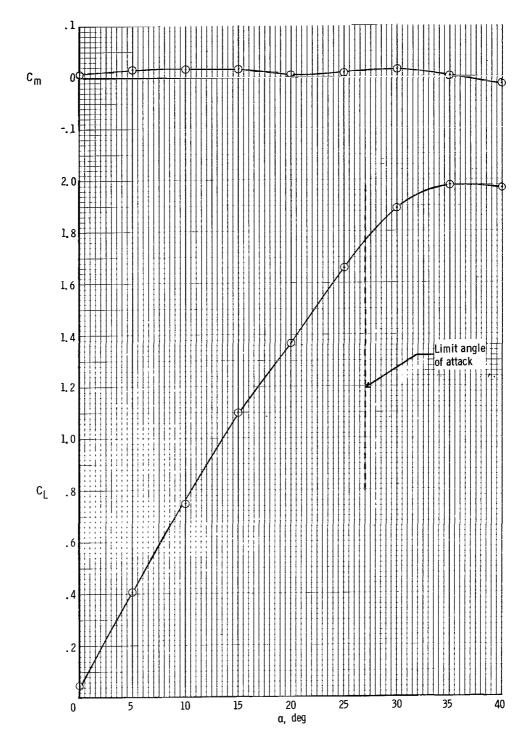
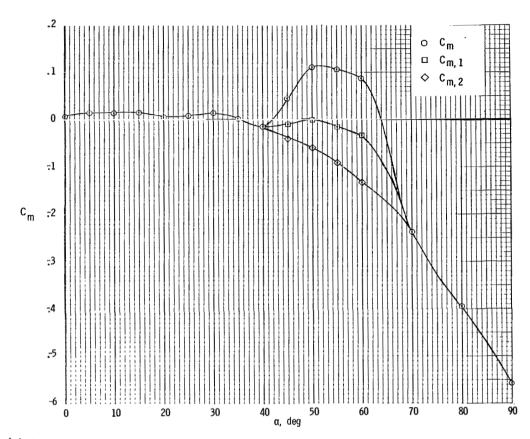
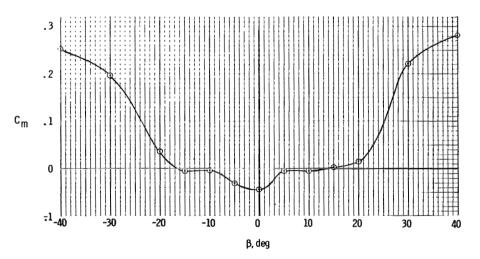
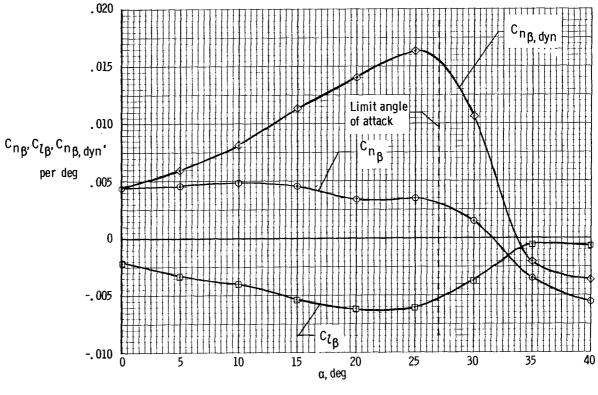




Figure 5.- View of side-stick installation in simulator cockpit.



(a) Variation of basic airframe pitching moment and lift with angle of attack for scheduled leading-edge flap deflections; $\delta_h = 0^{\circ}$; center of gravity at 0.352 \overline{c} .

Figure 6.- Longitudinal characteristics of configuration.



(b) Variation of pitching-moment curves with angle of attack for scheduled leading-edge flap deflections; $\delta_h = 0^\circ$; center of gravity at $0.352\overline{c}$.

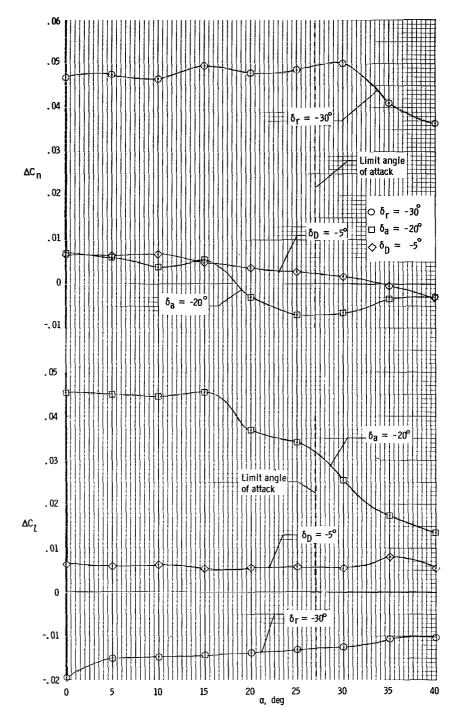
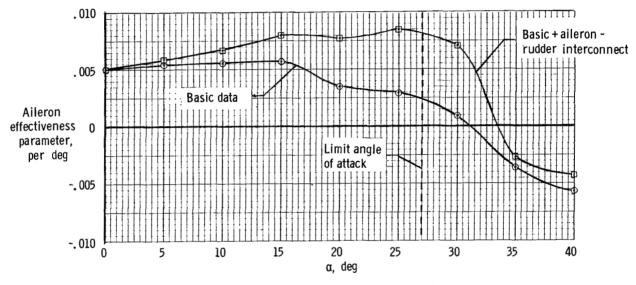
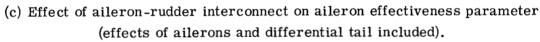
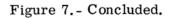

(c) Variation of pitching moment with sideslip for basic configuration at $\alpha = 40^{\circ}$ for leading-edge flap deflected 25°; $\delta_h = 0^{\circ}$; center of gravity at 0.34 \overline{c} .

Figure 6.- Concluded.


(a) Static stability characteristics.


Figure 7.- Variation of lateral-directional stability and control characteristics of basic configuration with angle of attack for scheduled leading-edge flap deflections; $\delta_h = 0^{\circ}$.



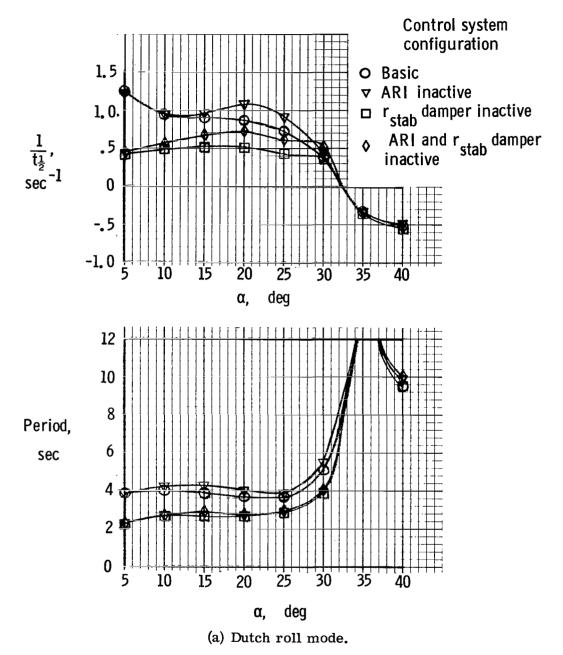
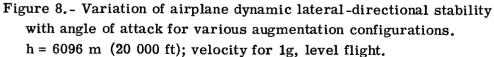
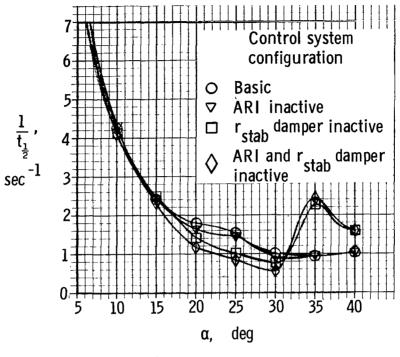

(b) Moment increments due to full deflection of lateral-directional controls.

Figure 7.- Continued.





l

(b) Roll mode.

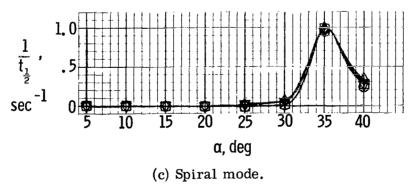


Figure 8. - Concluded.

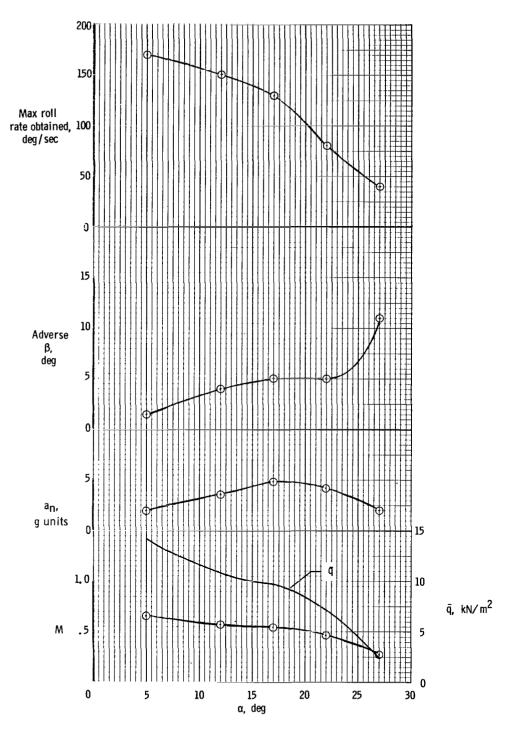


Figure 9.- Roll performance obtained with basic configuration at h = 6096 m (20 000 ft) with maximum roll control used to reverse bank angle.

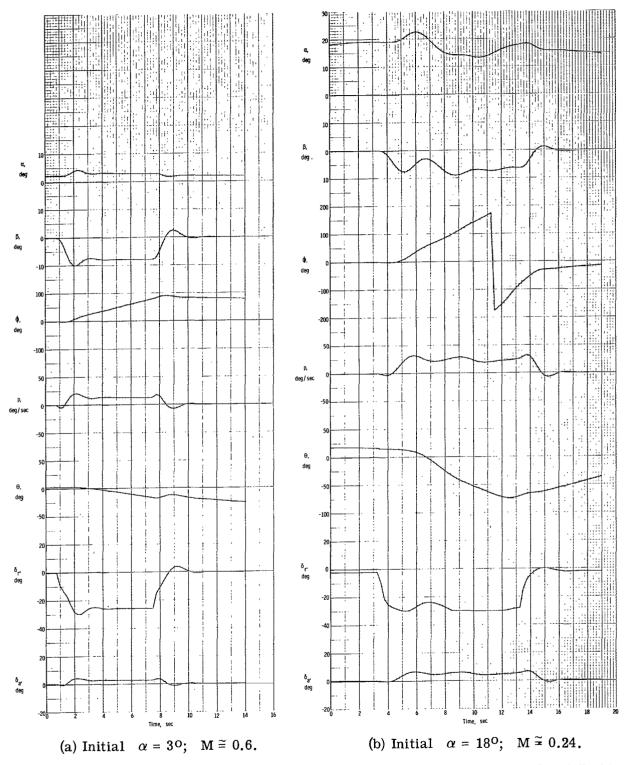


Figure 10.- Simulated response of basic airplane to step rudder inputs in level flight at h = 6096 m (20 000 ft).



Figure 11.- Sketch of roll performance task.

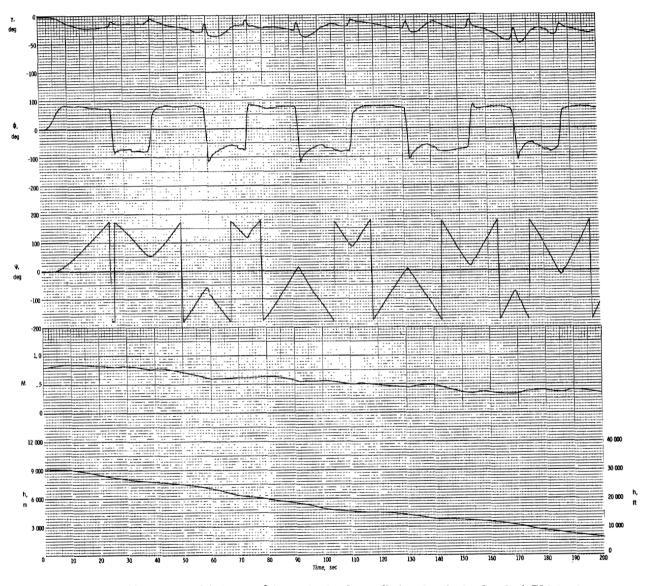
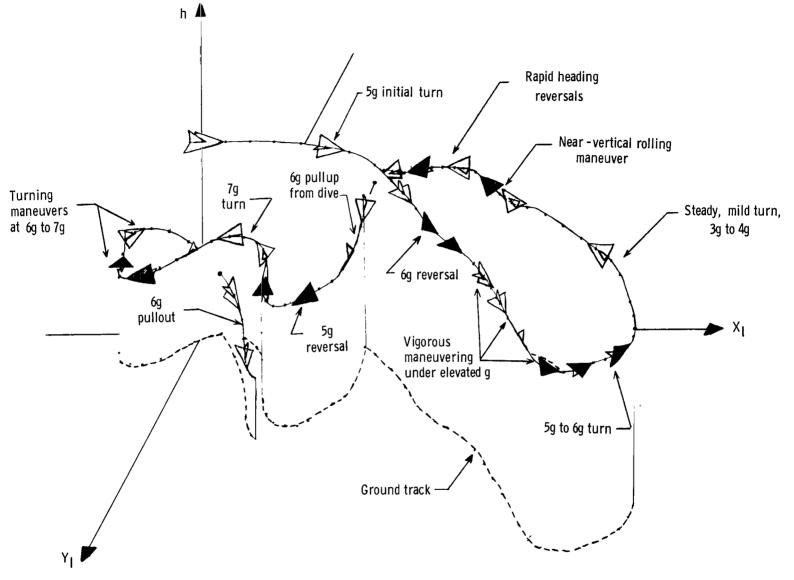
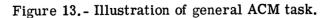




Figure 12.- Time history of target airplane flying bank-to-bank ACM task.

(a) Sketch of first half of task.

105

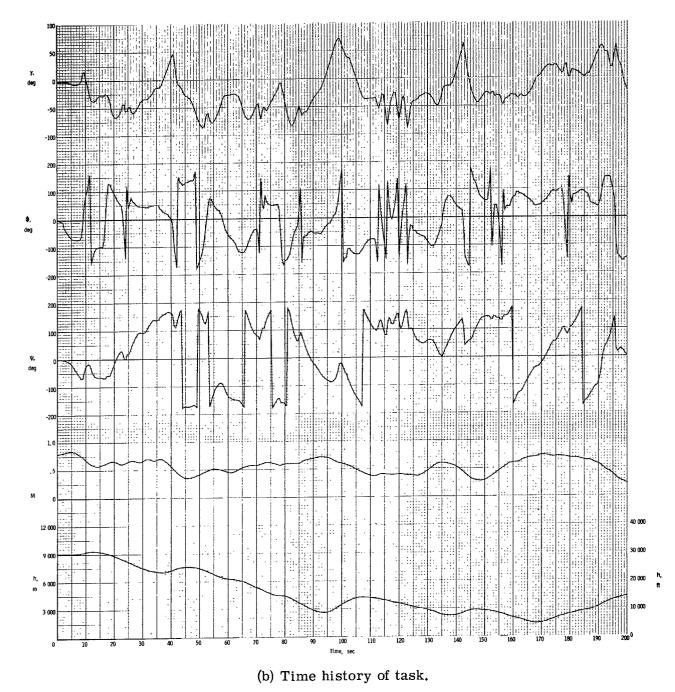


Figure 13. - Concluded.

ļ

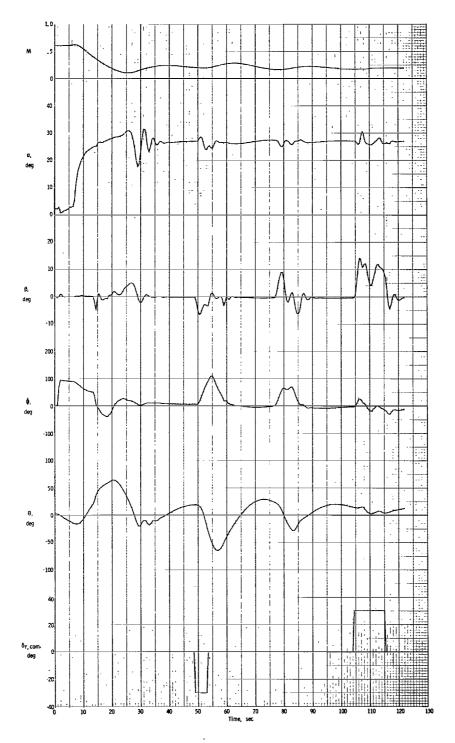


Figure 14.- Time history of controllability evaluation at maximum α for basic airplane.

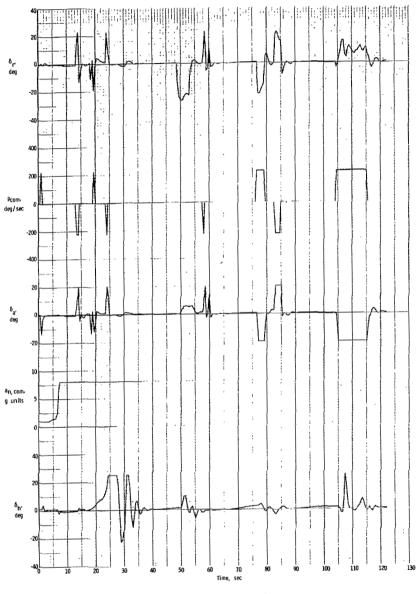


Figure 14. - Concluded.

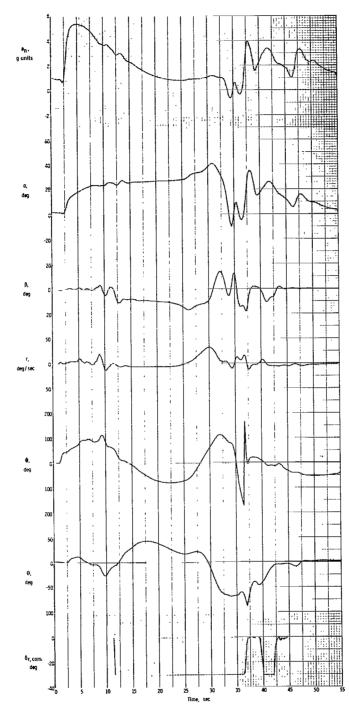


Figure 15.- Time history of motions resulting from full prospin controls during an accelerated stall.

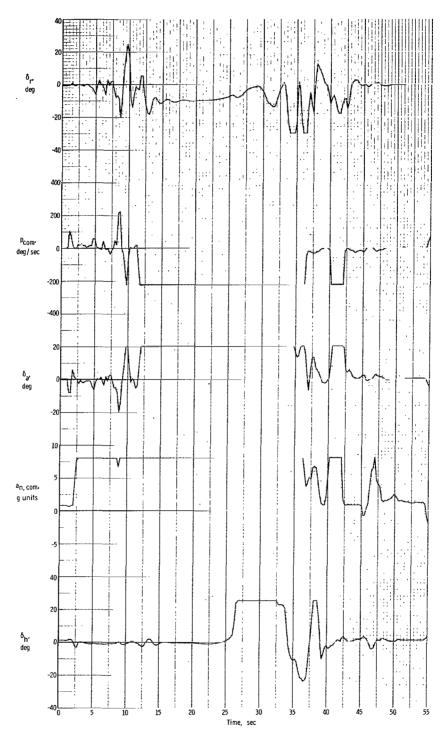


Figure 15. - Concluded.

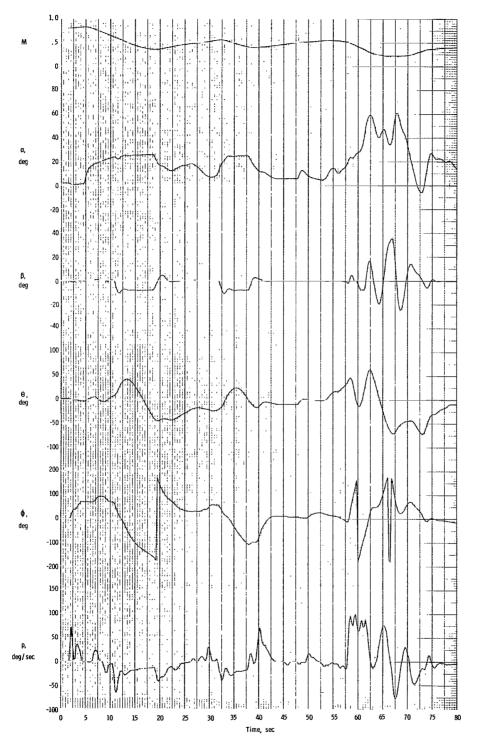


Figure 16.- Basic airplane motions in inertially coupled departure (maneuver starting near t = 50 sec).

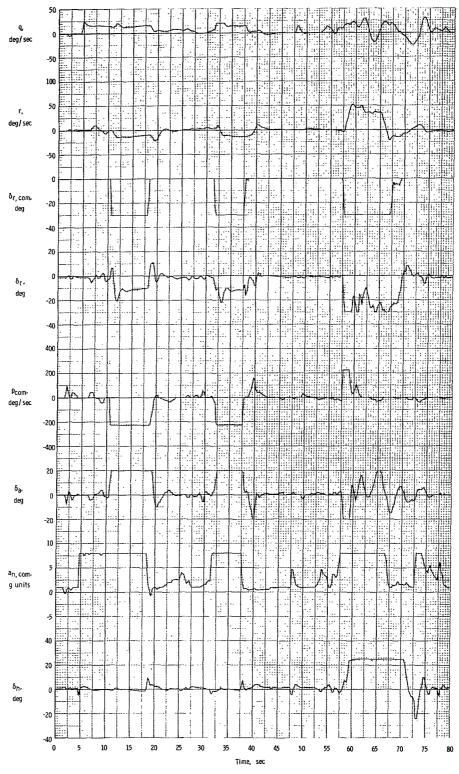


Figure 16. - Concluded.

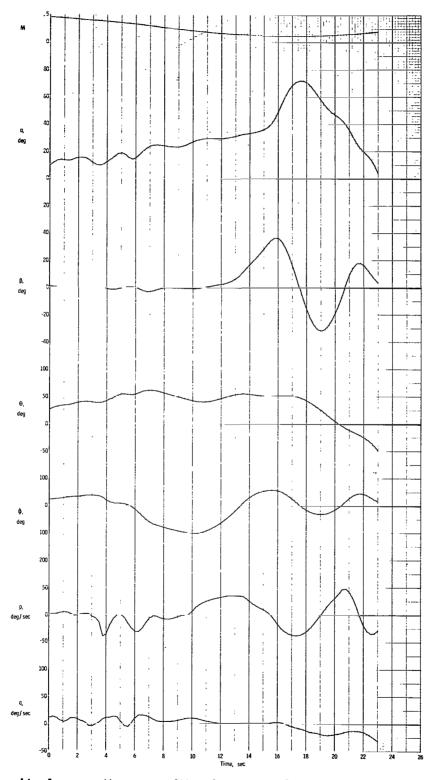


Figure 17.- Airplane motions resulting from aerodynamically coupled departure.

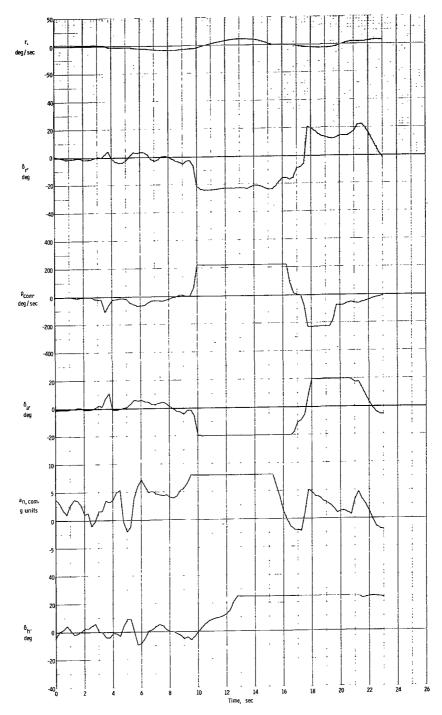


Figure 17.- Concluded.

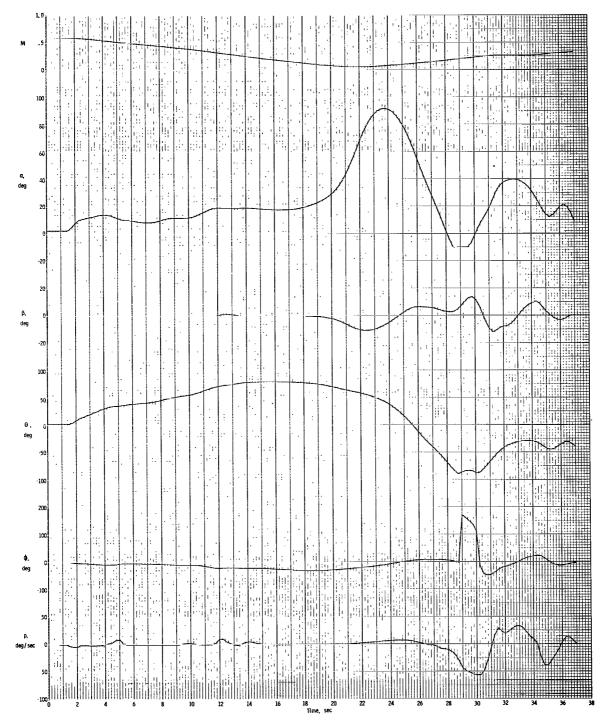


Figure 18.- Motions of airplane in vertical or hammerhead stall.

. .

Figure 18. - Concluded.

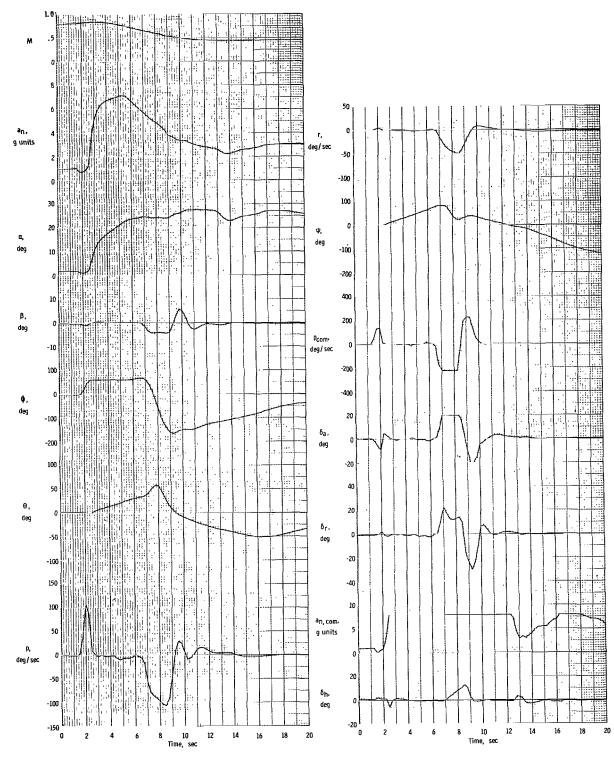


Figure 19.- Performance of airplane in roll-reversal task.

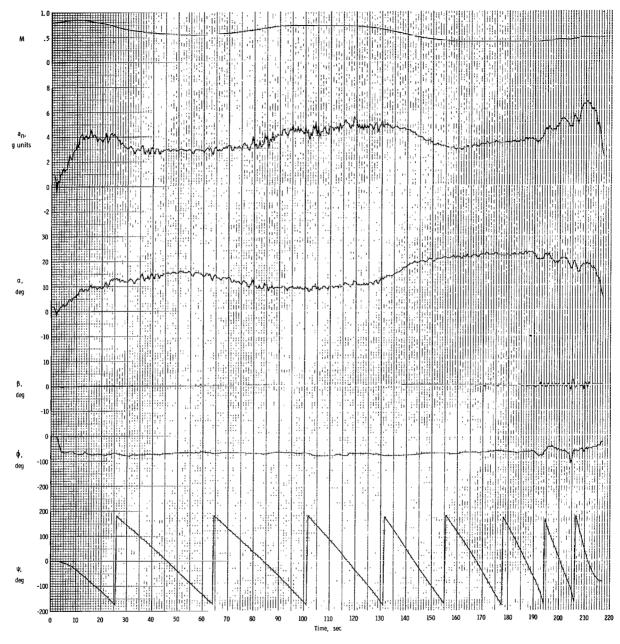


Figure 20.- Performance of airplane in steady tracking task.

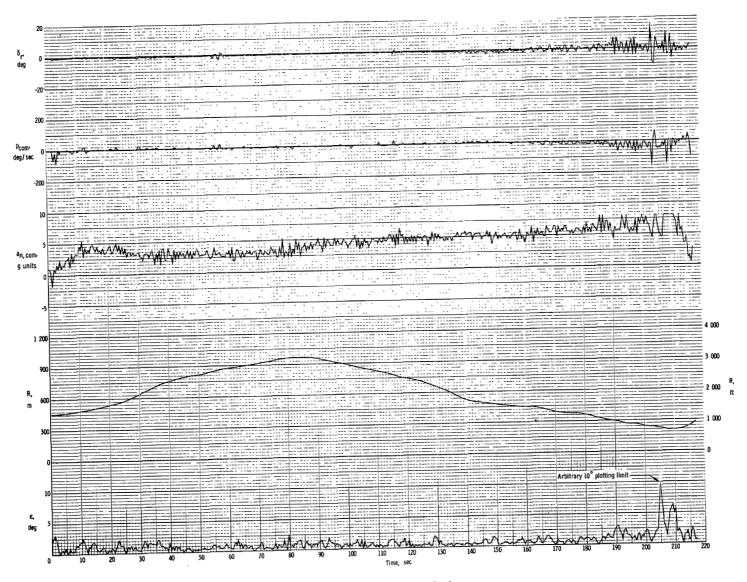
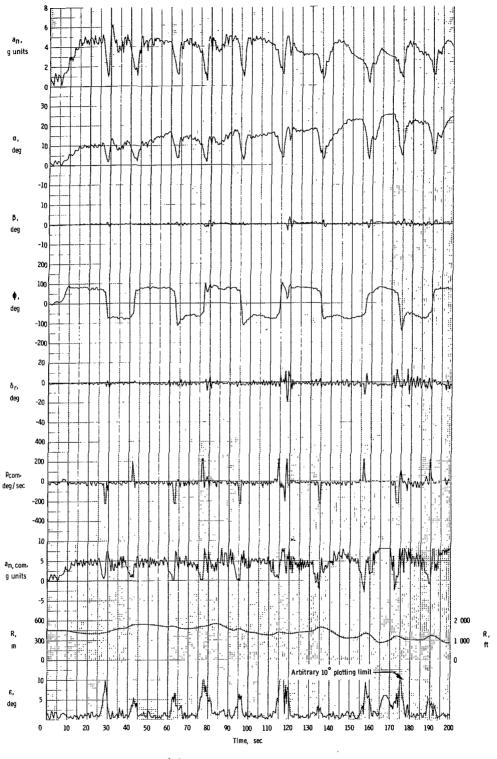



Figure 20.- Concluded.

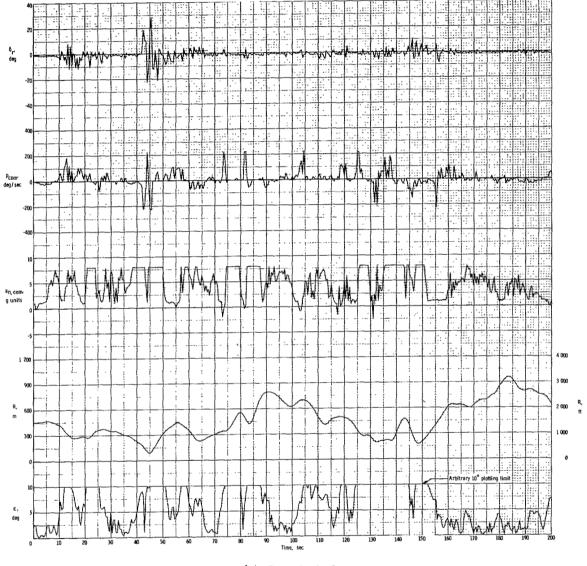

(a) Bank-to-bank task.

Figure 21.- Performance of airplane in ACM tasks.

I

(b) General ACM task. Figure 21.- Continued.

(b) Concluded.

Figure 21. - Concluded.

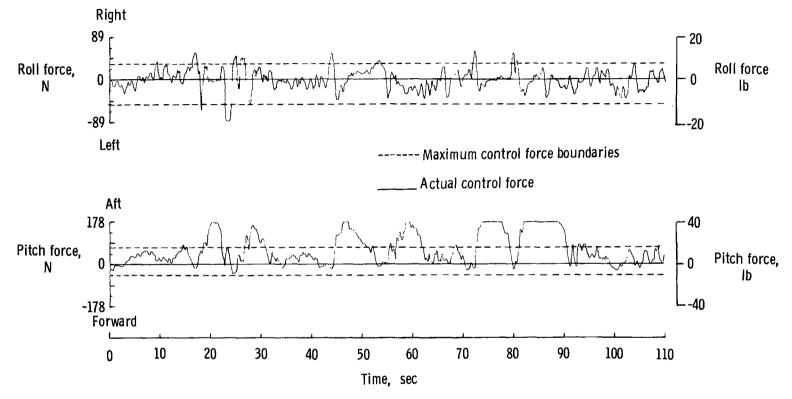


Figure 22.- Time history of pilot lateral and longitudinal control forces in ACM task compared with force levels for maximum commands.

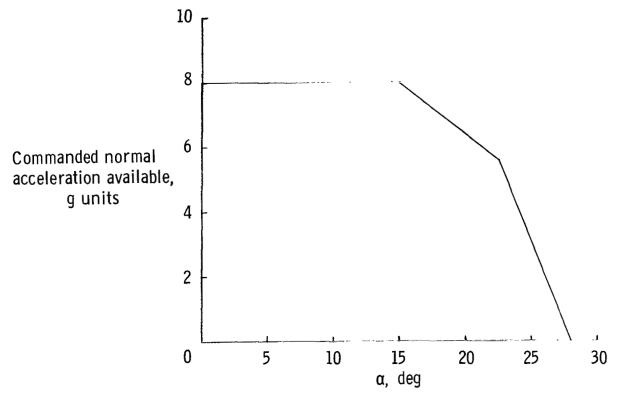
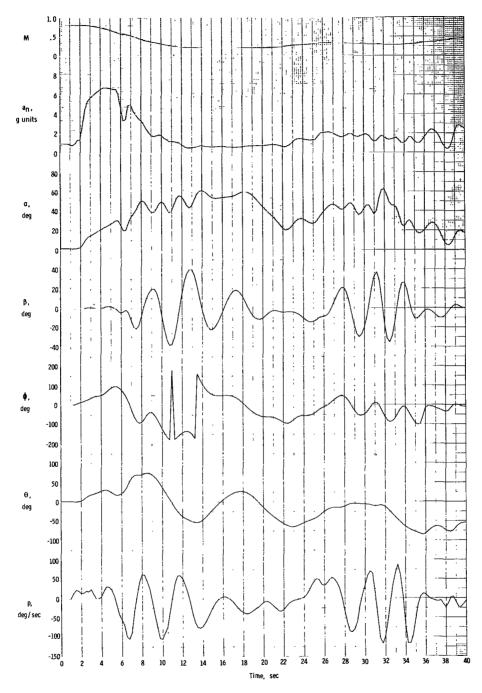



Figure 23.- Schedule of maximum available positive normal acceleration for angle-ofattack limiting (-4g negative normal acceleration command available).

l

Figure 24.- Performance of airplane without angle-of-attack/normal-acceleration limiting (but with angle-of-attack overshoot prevention) in roll performance task.



Figure 24. - Concluded.

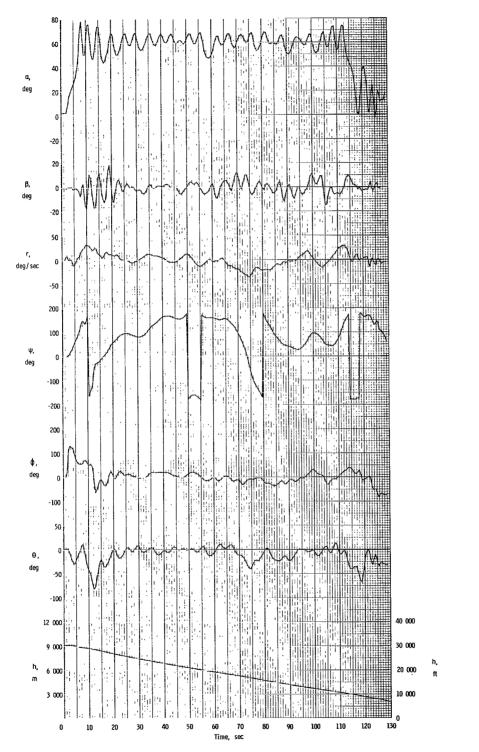


Figure 25.- Poststall recovery motions of airplane without angle-of-attack limiting feature for basic C_m curve (strong high-angle-of-attack trim point).

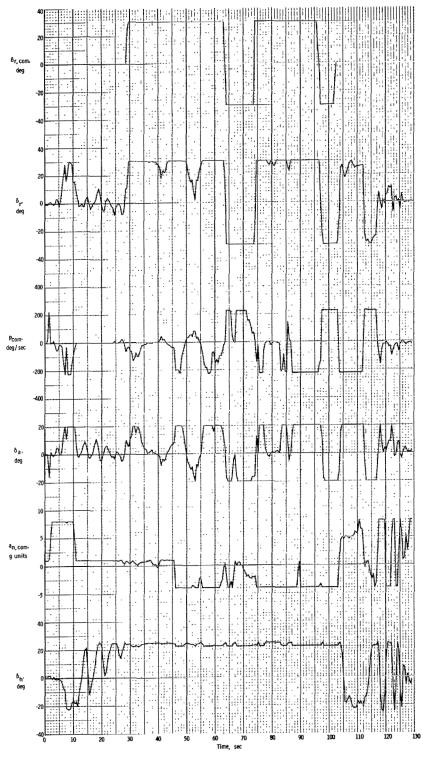


Figure 25. - Concluded.

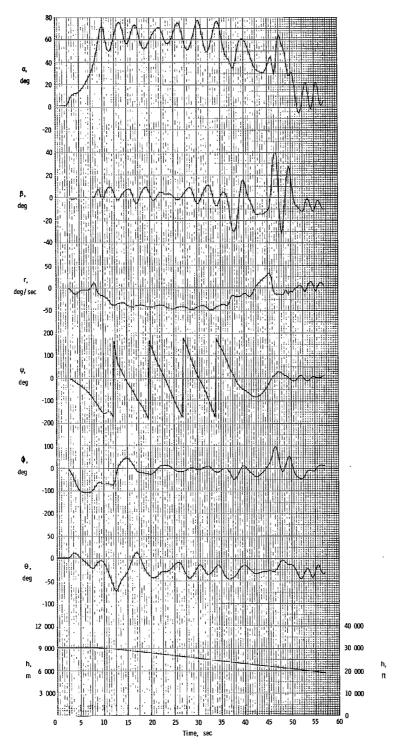


Figure 26.- Poststall recovery motions of airplane without angle-of-attack limiting for $C_{m,1}$ curve (mild high-angle-of-attack trim point).

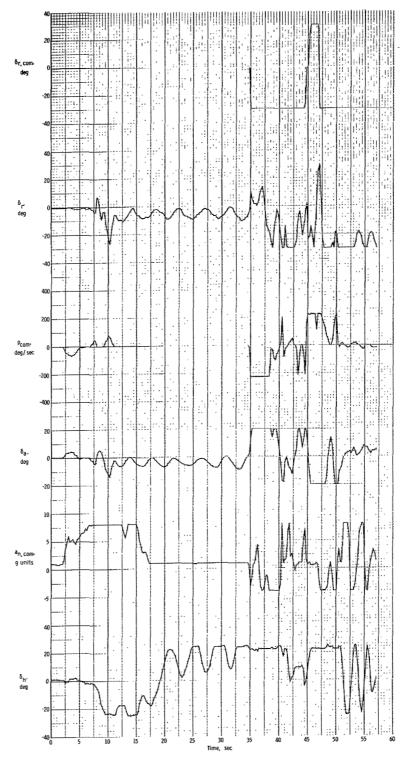


Figure 26. - Concluded.

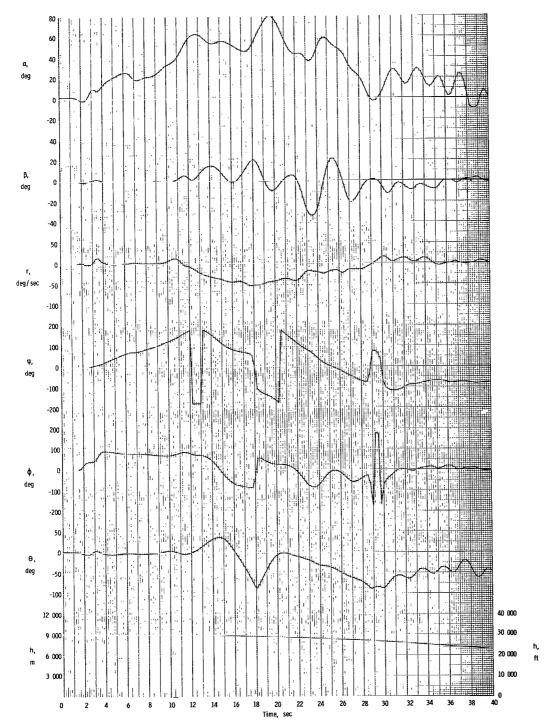
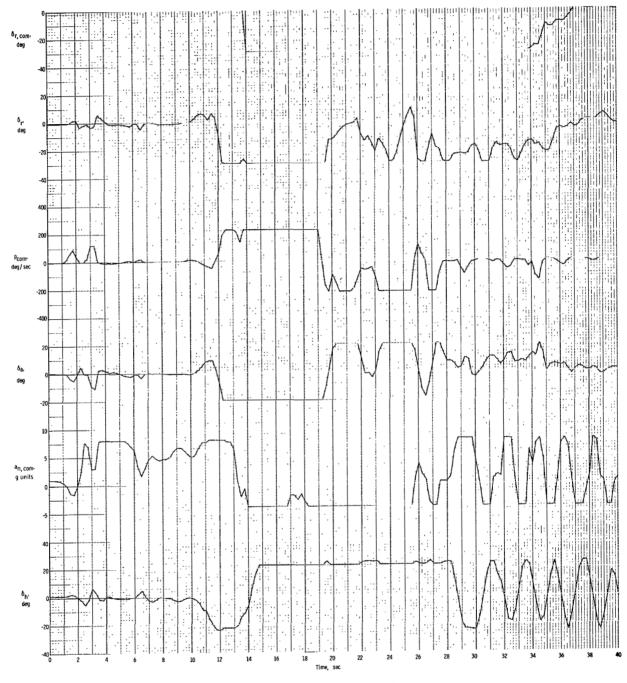



Figure 27.- Poststall recovery motions of airplane, without angle-of-attack limiting, for $C_{m,2}$ curve (conventional C_m curve).

Ì

Figure 27.- Concluded.

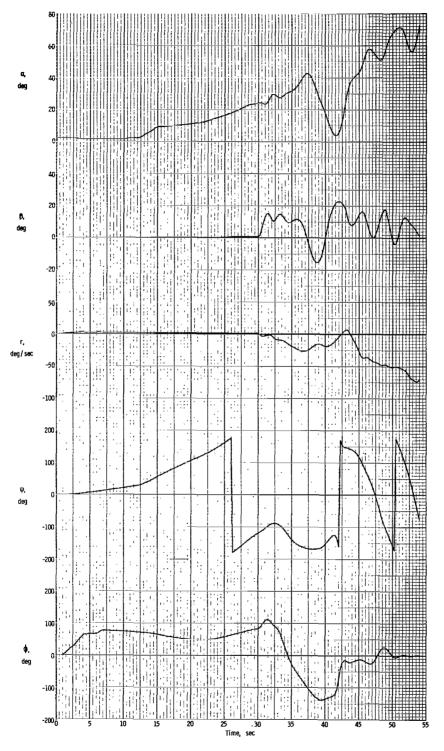


Figure 28.- Attempted spin entry in windup turn without ARI.

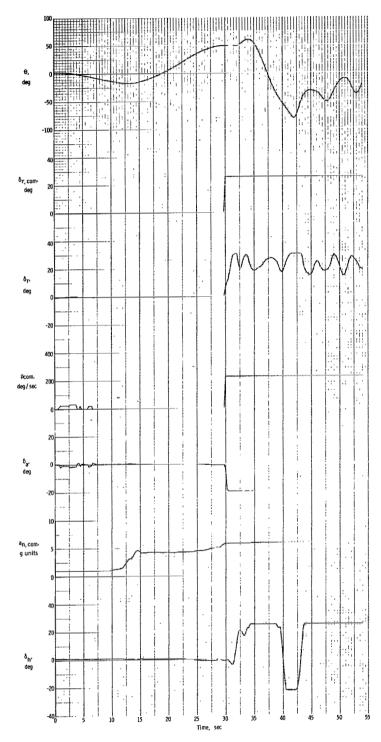


Figure 28. - Concluded.

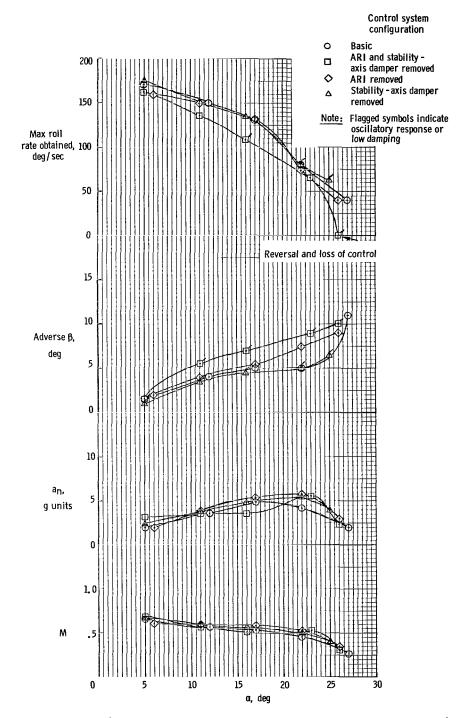


Figure 29.- Summary of roll performance obtained in maximum effort (full lateral control) bank-angle reversal as a function of angle of attack for roll initiation.

L

_ __

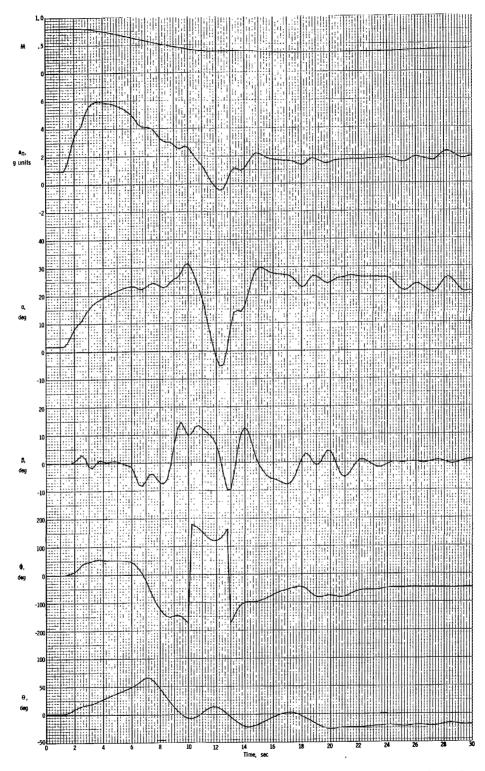


Figure 30.- Performance of airplane during roll performance task without ARI and stability-axis yaw damper.

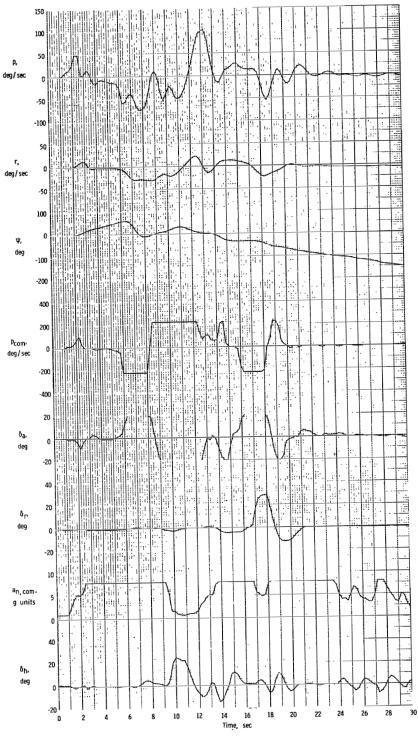


Figure 30. - Concluded.

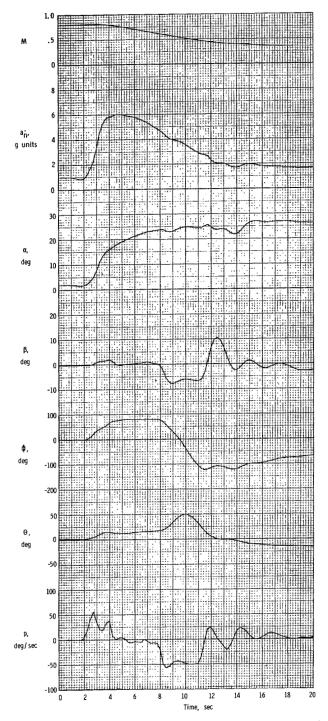


Figure 31.- Performance of airplane without ARI in roll performance task.

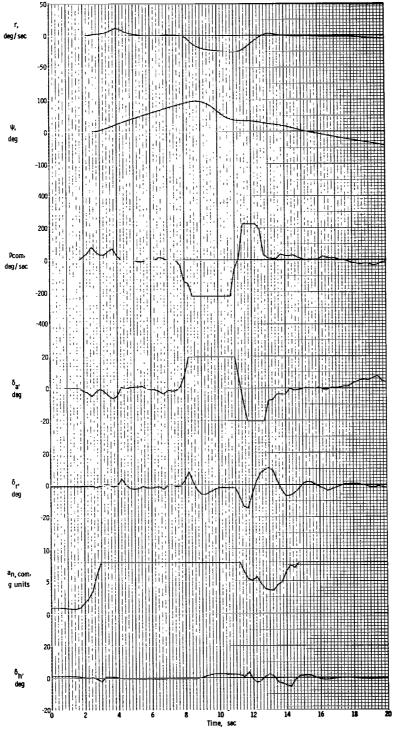


Figure 31. - Concluded.

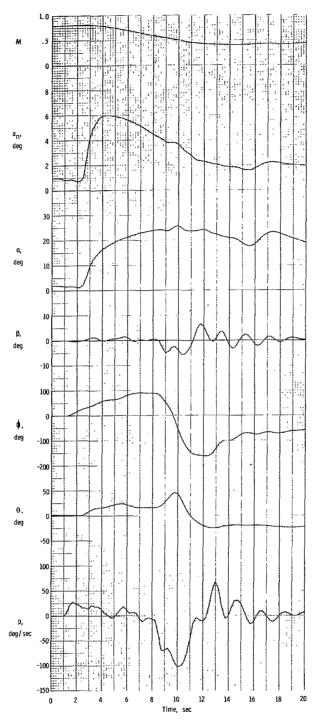


Figure 32. - Performance of airplane without stability-axis yaw damper in roll performance task.

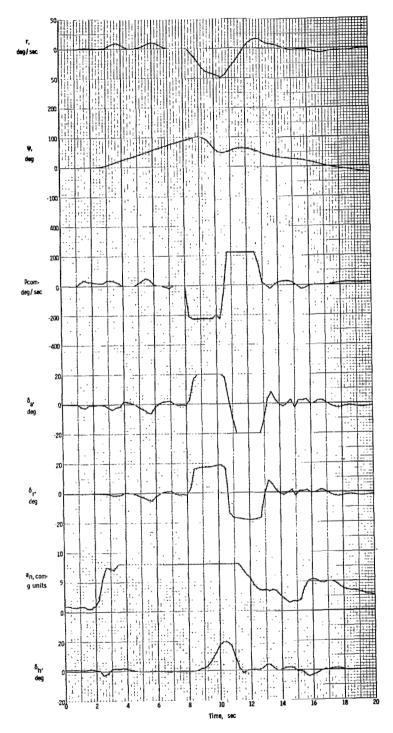
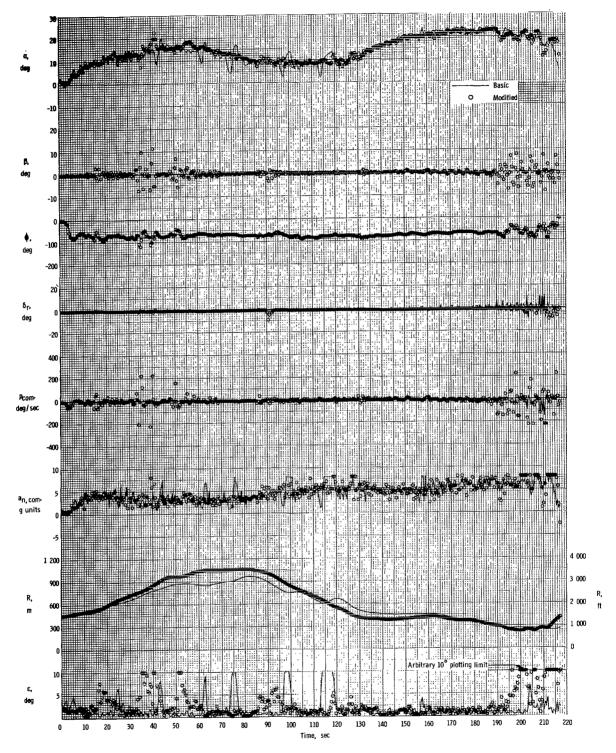
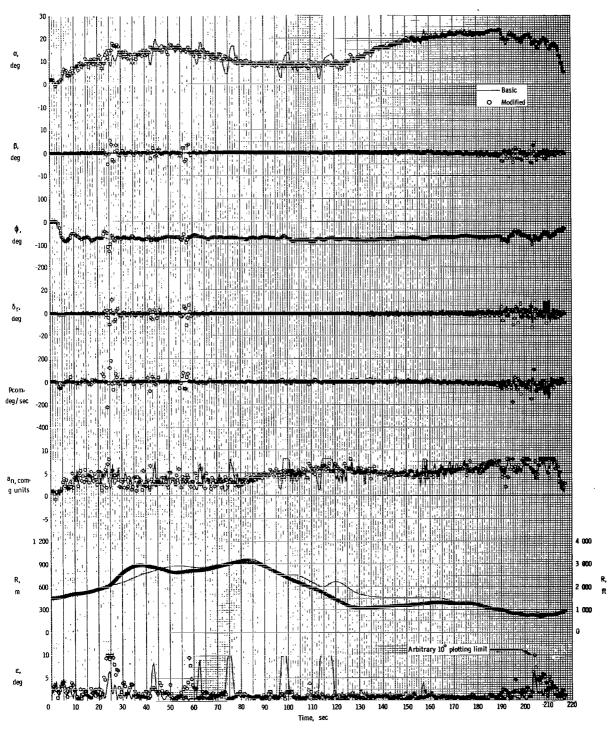




Figure 32. - Concluded.

(a) Effect of removing both ARI and stability-axis yaw damper.

Figure 33.- Time-history comparisons of basic and modified configurations performing steady tracking tasks.

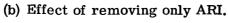
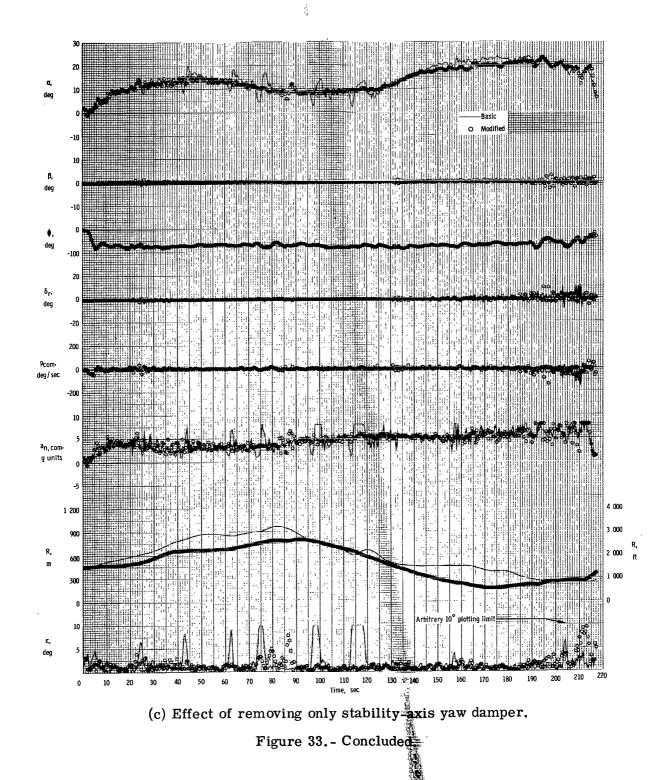
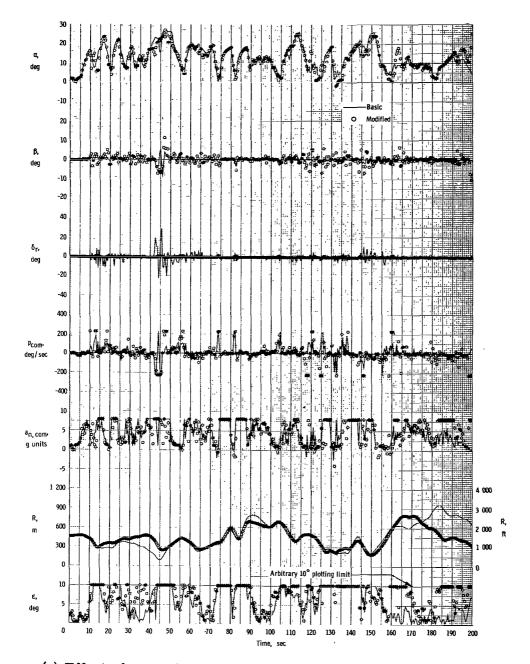




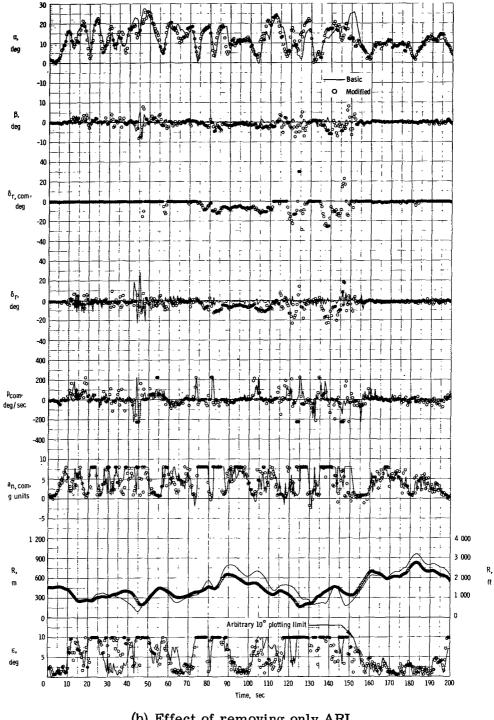
Figure 33.- Continued.

 $\frac{1}{2}$

.: :*_

I **II** I **I** I I I I

....


1 11

I

III III

I

(a) Effect of removing both ARI and stability-axis yaw damper.Figure 34.- Time-history comparisons of basic and modified airplane in general ACM task.

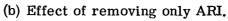
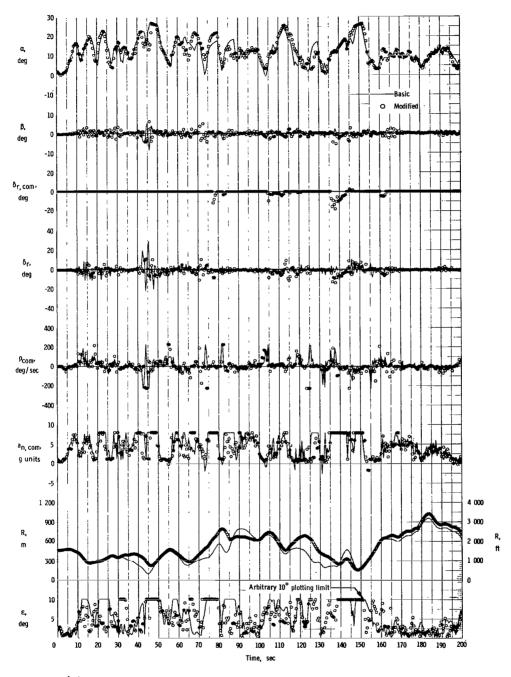



Figure 34.- Continued.

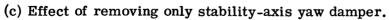
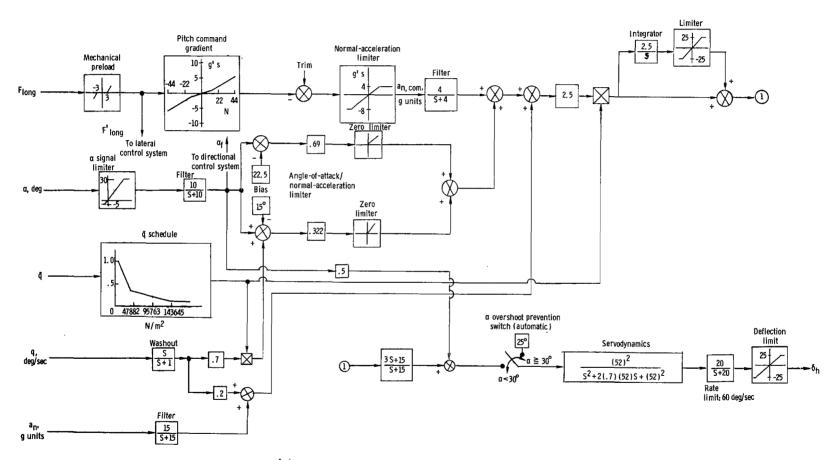
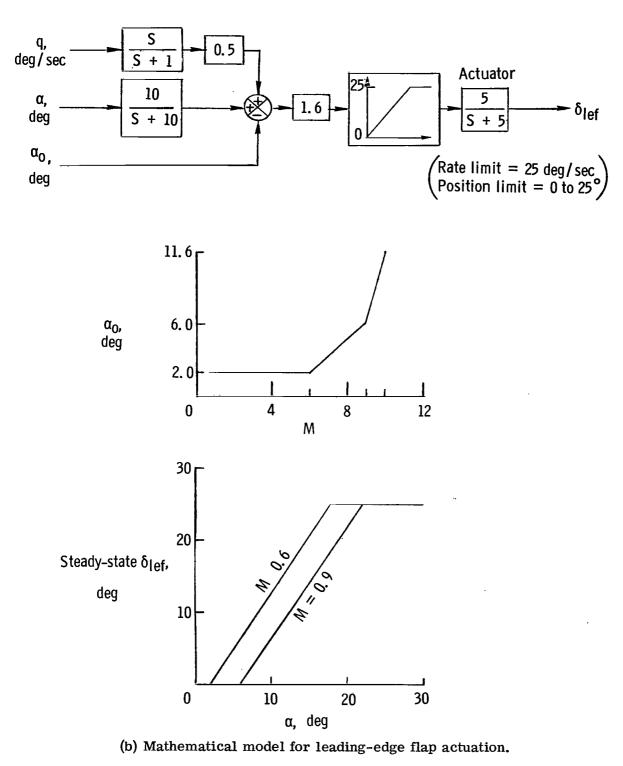




Figure 34. - Concluded.

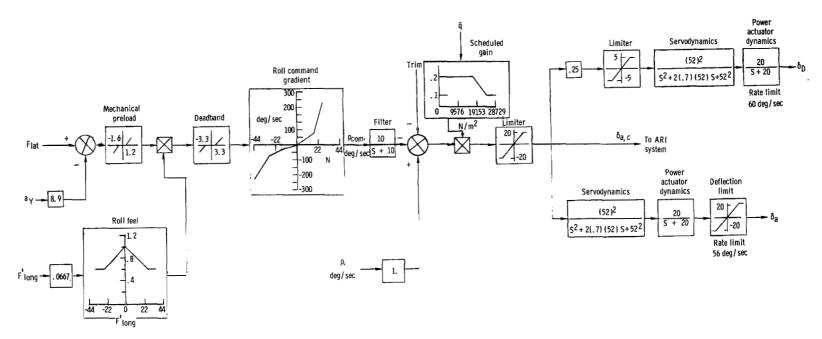
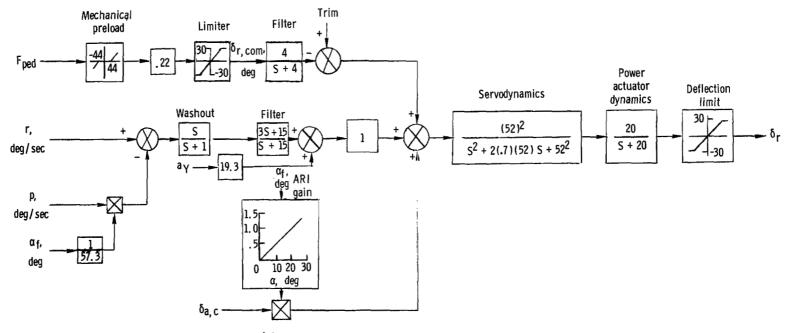

(a) Longitudinal control system diagram.

Figure 35. - Description of control system.

₩.

Figure 35.- Continued.



(c) Lateral control system diagram.

Figure 35.- Continued.

150

i

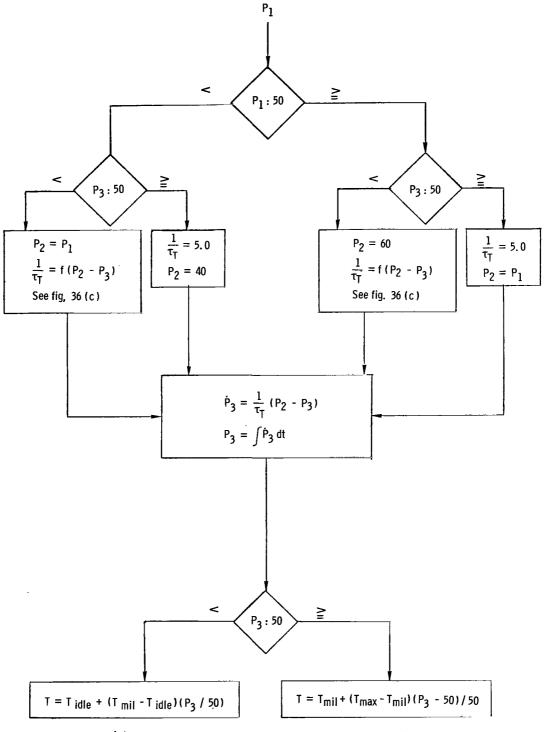

(d) Directional control system diagram.

Figure 35.- Concluded.

151

I.

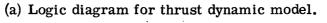
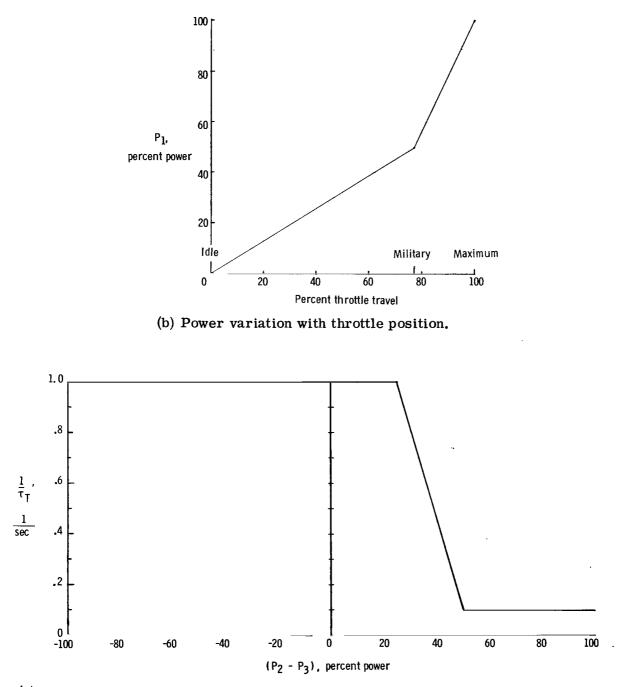
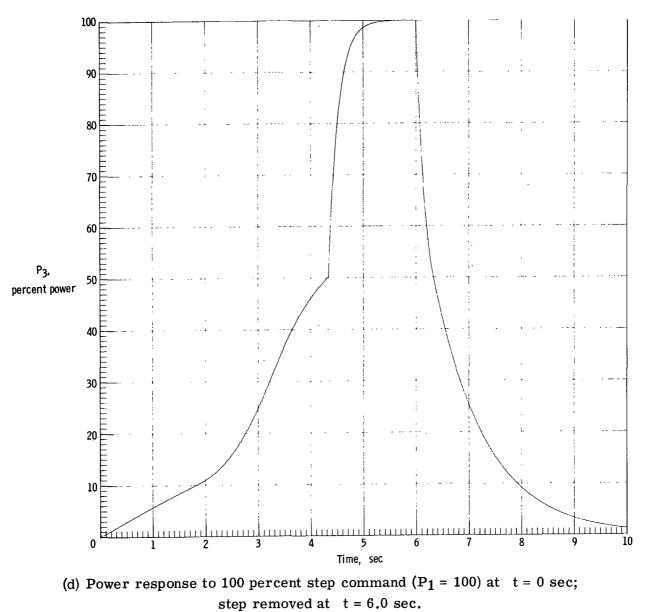



Figure 36.- Simulated powerplant characteristics.


I

(c) Variation of inverse of thrust time constant with incremental power command.

Figure 36.- Continued.

ł

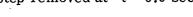


Figure 36. - Concluded.

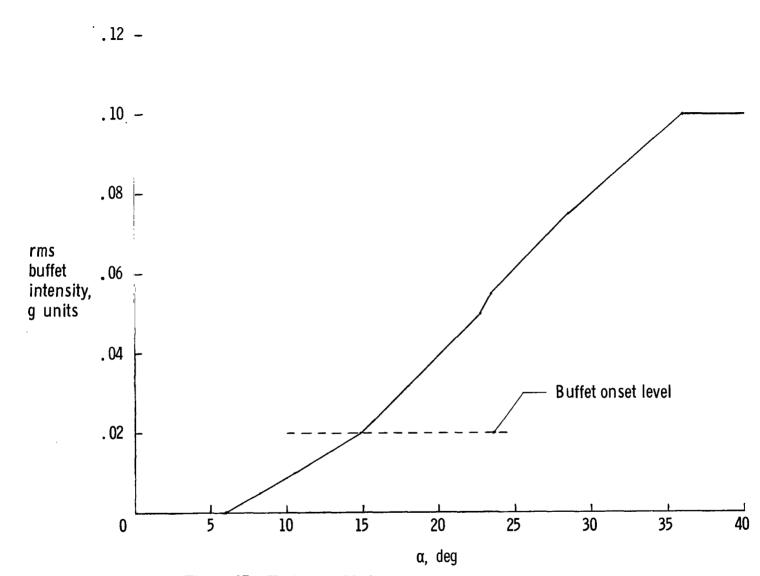


Figure 37.- Variation of buffet intensity with angle of attack.

NASA-Langley, 1976

L-10545