55 research outputs found

    Herschel observations of gamma-ray burst host galaxies: implications for the topology of the dusty interstellar medium

    Get PDF
    Long-duration gamma-ray bursts (GRBs) are indisputably related to star formation, and their vast luminosity in gamma rays pin-points regions of star formation independent of galaxy mass. As such, GRBs provide a unique tool for studying star forming galaxies out to high-z independent of luminosity. Most of our understanding of the properties of GRB hosts (GRBHs) comes from optical and near-infrared (NIR) follow-up observations, and we therefore have relatively little knowledge of the fraction of dust-enshrouded star formation that resides within GRBHs. Currently ~20% of GRBs show evidence of significant amounts of dust along the line of sight to the afterglow through the host galaxy, and these GRBs tend to reside within redder and more massive galaxies than GRBs with optically bright afterglows. In this paper we present Herschel observations of five GRBHs with evidence of being dust-rich, targeted to understand the dust attenuation properties within GRBs better. Despite the sensitivity of our Herschel observations, only one galaxy in our sample was detected (GRBH 070306), for which we measure a total star formation rate (SFR) of ~100Mstar/yr, and which had a relatively high stellar mass (log[Mstar]=10.34+0.09/-0.04). Nevertheless, when considering a larger sample of GRBHs observed with Herschel, it is clear that stellar mass is not the only factor contributing to a Herschel detection, and significant dust extinction along the GRB sightline (A_{V,GRB}>1.5~mag) appears to be a considerably better tracer of GRBHs with high dust mass. This suggests that the extinguishing dust along the GRB line of sight lies predominantly within the host galaxy ISM, and thus those GRBs with A_{V,GRB}>1~mag but with no host galaxy Herschel detections are likely to have been predominantly extinguished by dust within an intervening dense cloud.Comment: 14 pages, 7 figures. Accepted for publication in A&

    Clustering of galaxies around GRB sight-lines

    Full text link
    There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight towards GRB afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight-lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120^{\prime\prime} (470 h711 Kpc\sim470~h_{71}^{-1}~\mathrm{Kpc} at z0.4\langle z\rangle \sim0.4) of GRB afterglows. We compare the Gamma-ray burst Optical and Near-infrared Detector (GROND) GRB afterglow sample -- one of the largest and most homogeneous samples of GRB fields -- with galaxies and AGN found in the COSMOS-30 photometric catalog. We find no significant signal of anomalous clustering of galaxies at an estimated median redshift of z0.3z\sim0.3 around GRB sight-lines, down to KAB<19.3K_{\mathrm{AB}}<19.3. This result is contrary to the expectations from the MgII excess derived from GRB afterglow spectroscopy, although many confirmed galaxy counterparts to MgII absorbers may be too faint to detect in our sample -- especially those at z>1z>1. We note that the addition of higher sensitivity Spitzer IRAC or HST WFC3 data for even a subset of our sample would increase this survey's depth by several orders of magnitude, simultaneously increasing statistics and enabling the investigation of a much larger redshift space.}Comment: 10 pages, 6 figures. A&A accepte

    Gas inflow and outflow in an interacting high-redshift galaxy The remarkable host environment of GRB 080810 at z=3.35

    Get PDF
    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH i ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH i ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium

    Census of HII regions in NGC 6754 derived with MUSE: Constraints on the metal mixing scale

    Get PDF
    We present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197,637 individual spectra, using Integral Field Spectrocopy (IFS) recently acquired with the MUSE instrument during its Science Verification program. The data cover the entire galaxy out to ~2 effective radii (re ), sampling its morphological structures with unprecedented spatial resolution for a wide-field IFU. A complete census of the H ii regions limited by the atmospheric seeing conditions was derived, comprising 396 individual ionized sources. This is one of the largest and most complete catalogue of H ii regions with spectroscopic information in a single galaxy. We use this catalogue to derive the radial abundance gradient in this SBb galaxy, finding a negative gradient with a slope consistent with the characteristic value for disk galaxies recently reported. The large number of H ii regions allow us to estimate the typical mixing scale-length (rmix ~0.4 re ), which sets strong constraints on the proposed mechanisms for metal mixing in disk galaxies, like radial movements associated with bars and spiral arms, when comparing with simulations. We found evidence for an azimuthal variation of the oxygen abundance, that may be related with the radial migration. These results illustrate the unique capabilities of MUSE for the study of the enrichment mechanisms in Local Universe galaxies.Comment: 13 pages, 7 Figurs, accepted for publishing in A&

    Dust extinction for an unbiased sample of GRB afterglows

    Full text link
    In this paper we compute rest-frame extinctions for the afterglows of a sample of gamma-ray bursts complete in redshift. The selection criteria of the sample are based on observational high-energy parameters of the prompt emission and therefore our sample should not be biased against dusty sight-lines. It is therefore expected that our inferences hold for the general population of gamma-ray bursts. Our main result is that the optical/near-infrared extinction of gamma-ray burst afterglows in our sample does not follow a single distribution. 87% of the events are absorbed by less than 2 mag, and 50% suffer from less than 0.3-0.4 mag extinction. The remaining 13% of the afterglows are highly absorbed. The true percentage of gamma-ray burst afterglows showing high absorption could be even higher since a fair fraction of the events without reliable redshift measurement are probably part of this class. These events may be due to highly dusty molecular clouds/star forming regions associated with the gamma-ray burst progenitor or along the afterglow line of sight, and/or to massive dusty host galaxies. No clear evolution in the dust extinction properties is evident within the redshift range of our sample, although the largest extinctions are at z~1.5-2, close to the expected peak of the star formation rate. Those events classified as dark are characterized, on average, by a higher extinction than typical events in the sample. A correlation between optical/near-infrared extinction and hydrogen-equivalent column density based on X-ray studies is shown although the observed NH appears to be well in excess compared to those observed in the Local Group. Dust extinction does not seem to correlate with GRB energetics or luminosity.Comment: 18 pages, 7 figures, 10 tables, MNRAS, in pres

    The late-time afterglow of the extremely energetic short burst GRB 090510 revisited

    Get PDF
    The discovery of the short GRB 090510 has raised considerable attention mainly because it had a bright optical afterglow and it is among the most energetic events detected so far within the entire GRB population. The afterglow was observed with swift/UVOT and swift/XRT and evidence of a jet break around 1.5 ks after the burst has been reported in the literature, implying that after this break the optical and X-ray light curve should fade with the same decay slope. As noted by several authors, the post-break decay slope seen in the UVOT data is much shallower than the steep decay in the X-ray band, pointing to an excess of optical flux at late times. We reduced and analyzed new afterglow light-curve data obtained with the multichannel imager GROND. Based on the densely sampled data set obtained with GROND, we find that the optical afterglow of GRB 090510 did indeed enter a steep decay phase starting around 22 ks after the burst. During this time the GROND optical light curve is achromatic, and its slope is identical to the slope of the X-ray data. In combination with the UVOT data this implies that a second break must have occurred in the optical light curve around 22 ks post burst, which, however, has no obvious counterpart in the X-ray band, contradicting the interpretation that this could be another jet break. The GROND data provide the missing piece of evidence that the optical afterglow of GRB 090510 did follow a post-jet break evolution at late times.Comment: submitted to Astronomy & Astrophysics, accepted for publication on Dec 24, 201

    Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    Get PDF
    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe-II (hydrogen-rich) occur in more massive, more metal-rich galaxies with softer radiation fields. Therefore, if SLSNe-II constitute a uniform class, their progenitor systems are likely different from those of H-poor SLSNe. Gamma-ray bursts (GRBs) are, on average, not found in as extreme environments as H-poor SLSNe. We propose that H-poor SLSNe result from the very first stars exploding in a starburst, even earlier than GRBs. This might indicate a bottom-light initial mass function in these systems. SLSNe present a novel method of selecting candidate EELGs independent of their luminosity.Comment: Published version, matches proofs. Accepted 2015 February 13. 23 pages, 8 figures, 4 tables. Minor changes with respect to previous versio

    The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C

    Get PDF
    The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the accurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a distant event is rather surprising. The observed gamma-ray variability in the prompt emission together with the redshift suggests a lower limit for the Lorentz factor of the ultra-relativistic ejecta of Gamma > 1090. This value rivals any previous measurements of Gamma in GRBs and strengthens the extreme nature of GRB 080916C.Comment: 6 pages, 5 figures; subm. to A&

    GRB 091029: At the limit of the fireball scenario

    Full text link
    Using high-quality, broad-band afterglow data for GRB 091029, we test the validity of the forward-shock model for gamma-ray burst afterglows. We used multi-wavelength (NIR to X-ray) follow-up observations obtained with the GROND, BOOTES-3/YA and Stardome optical ground-based telescopes, and the UVOT and the XRT onboard the Swift satellite. To explain the almost totally decoupled light curves in the X-ray and optical/NIR domains, a two-component outflow is proposed. Several models are tested, including continuous energy injection, components with different electron energy indices and components in two different stages of spectral evolution. Only the last model can explain both the decoupled light curves with asynchronous peaks and the peculiar SED evolution. However, this model has so many unknown free parameters that we are unable to reliably confirm or disprove its validity, making the afterglow of GRB 091029 difficult to explain in the framework of the simplest fireball model.Comment: Accepted to A&
    corecore