57 research outputs found

    InParanoid 7: new algorithms and tools for eukaryotic orthology analysis

    Get PDF
    The InParanoid project gathers proteomes of completely sequenced eukaryotic species plus Escherichia coli and calculates pairwise ortholog relationships among them. The new release 7.0 of the database has grown by an order of magnitude over the previous version and now includes 100 species and their collective 1.3 million proteins organized into 42.7 million pairwise ortholog groups. The InParanoid algorithm itself has been revised and is now both more specific and sensitive. Based on results from our recent benchmarking of low-complexity filters in homology assignment, a two-pass BLAST approach was developed that makes use of high-precision compositional score matrix adjustment, but avoids the alignment truncation that sometimes follows. We have also updated the InParanoid web site (http://InParanoid.sbc.su.se). Several features have been added, the response times have been improved and the site now sports a new, clearer look. As the number of ortholog databases has grown, it has become difficult to compare among these resources due to a lack of standardized source data and incompatible representations of ortholog relationships. To facilitate data exchange and comparisons among ortholog databases, we have developed and are making available two XML schemas: SeqXML for the input sequences and OrthoXML for the output ortholog clusters

    Clinical utility of serum HER2/neu in monitoring and prediction of progression-free survival in metastatic breast cancer patients treated with trastuzumab-based therapies

    Get PDF
    INTRODUCTION: The purpose of this retrospective study was to determine the clinical utility of serum HER2/neu in monitoring metastatic breast cancer patients undergoing trastuzumab-based therapy and to compare these results with those obtained using cancer antigen (CA) 15-3. We also sought to determine whether early changes in serum HER2/neu concentrations could be a predictor of progression-free survival. METHODS: Sera were obtained retrospectively from 103 women at four medical institutions. Patients eligible for participation were women with metastatic breast cancer who had HER2/neu tissue overexpression and were scheduled to be treated with trastuzumab with or without additional therapies as per the established practices of the treating physicians. A baseline serum sample for each patient was taken before trastuzumab-based therapy was started. Patients were subsequently monitored over 12 to 20 months and serum samples were taken at the time of clinical assessment and tested with Bayer's HER2/neu and CA15-3 assays. RESULTS: Concordance between clinical status in patients undergoing trastuzumab-based treatment and HER2/neu and CA15-3 used as single tests was 0.793 and 0.627, respectively, and increased to 0.829 when the tests were used in combination. Progression-free survival times did not differ significantly in patients with elevated baseline HER2/neu concentrations (≥ 15 ng/mL) and those with normal concentrations (<15 ng/mL). However, progression-free survival differed significantly (P = 0.043) according to whether the patient's HER2/neu concentration at 2 to 4 weeks after the start of therapy was >77% or ≤ 77% of her baseline concentration. The median progression-free survival times for these two groups were 217 and 587 days, respectively. A similar trend was observed for a subcohort of patients treated specifically with a combination of trastuzumab and taxane. CONCLUSION: These findings indicate that serum HER2/neu testing is clinically valuable in monitoring metastatic breast cancer patients undergoing trastuzumab-based treatment and provides additional value over the commonly used CA15-3 test. The percentage of baseline HER2/neu concentrations in the early weeks after the start of therapy may be an early predictor of progression-free-survival

    Angiogenesis Markers Quantification in Breast Cancer and Their Correlation with Clinicopathological Prognostic Variables

    Get PDF
    Tumoural angiogenesis is essential for the growth and spread of breast cancer cells. Therefore the aim of this study was to assess the diagnostic performance of angiogenesis markers in tumours and there reflecting levels in serum of breast cancer patients. Angiogenin, Ang2, fibroblast growth factor basic, intercellular adhesion molecule (ICAM)-1, keratinocyte growth factor (KGF), platelet-derived growth factor-BB, and VEGF-A were measured using a FASTQuant angiogenic growth factor multiplex protein assay. We observed that breast cancer tumours exhibited high levels of PDGF-BB, bFGF and VEGF, and extremely high levels of TIMP-1 and Ang-2, whereas in serum we found significantly higher levels of Ang-2, PDGF-BB, bFGF, ICAM-1 and VEGF in patients with breast cancer compared to the benign breast diseases patients. Moreover, some of these angiogenesis markers evaluated in tumour and serum of breast cancer patients exhibited association with standard clinical parameters, ER status as well as MVD of tumours. Angiogenesis markers play important roles in tumour growth, invasion and metastasis. Our results suggest that analysis of angiogenesis markers in tumour and serum of breast cancer patients using multiplex protein assay can improve diagnosis and prognosis in this diseases

    HER2 therapy: Molecular mechanisms of trastuzumab resistance

    Get PDF
    Trastuzumab is a monoclonal antibody targeted against the HER2 tyrosine kinase receptor. The majority of patients with metastatic breast cancer who initially respond to trastuzumab develop resistance within one year of treatment initiation, and in the adjuvant setting 15% of patients still relapse despite trastuzumab-based therapy. In this review, we discuss potential mechanisms of antitumor activity by trastuzumab, and how these mechanisms become altered to promote therapeutic resistance. We also discuss novel therapies that may improve the efficacy of trastuzumab, and that offer hope that the survival of breast cancer patients with HER2-overexpressing tumors can be vastly improved

    Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods

    Get PDF
    Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone

    Detection of genomically aberrant cells within circulating tumor microemboli (CTMs) isolated from early-stage breast cancer patients

    No full text
    Circulating tumor microemboli (CTMs) are clusters of cancer cells detached from solid tumors, whose study can reveal mechanisms underlying metastatization. As they frequently com-prise unknown fractions of leukocytes, the analysis of copy number alterations (CNAs) is challeng-ing. To address this, we titrated known numbers of leukocytes into cancer cells (MDA-MB-453 and MDA-MB-36, displaying high and low DNA content, respectively) generating tumor fractions from 0–100%. After low-pass sequencing, ichorCNA was identified as the best algorithm to build a linear mixed regression model for tumor fraction (TF) prediction. We then isolated 53 CTMs from blood samples of six early-stage breast cancer patients and predicted the TF of all clusters. We found that all clusters harbor cancer cells between 8 and 48%. Furthermore, by comparing the identified CNAs of CTMs with their matched primary tumors, we noted that only 31–71% of aberrations were shared. Surprisingly, CTM-private alterations were abundant (30–63%), whereas primary tumor-private alterations were rare (4–12%). This either indicates that CTMs are disseminated from further pro-gressed regions of the primary tumor or stem from cancer cells already colonizing distant sites. In both cases, CTM-private mutations may inform us about specific metastasis-associated functions of involved genes that should be explored in follow-up and mechanistic studies
    corecore