6 research outputs found

    Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators

    Get PDF
    The synchronization of multiple nanocontact spin-torque oscillators (NC-STOs) is mediated by propagating spin waves (SWs). Although it has been shown that the Oersted field generated in the vicinity of the NC can dramatically alter the emission pattern of SWs, its role in the synchronization behaviour of multiple NCs has not been considered so far. Here we investigate the synchronization behaviour in multiple NC-STOs oriented either vertically or horizontally, with respect to the in-plane component of the external field. Synchronization is promoted (impeded) by the Oersted field landscape when the NCs are oriented vertically (horizontally) due to the highly anisotropic SW propagation. Not only is robust synchronization between two oscillators observed for separations larger than 1,000 nm, but synchronization of up to five oscillators, a new record, has been observed in the vertical array geometry. Furthermore, the synchronization can no longer be considered mutual in nature

    Long-range mutual synchronization of spin Hall nano-oscillators

    Get PDF
    The spin Hall effect in a non-magnetic metal with spin–orbit coupling injects transverse spin currents into adjacent magnetic layers, where the resulting spin transfer torque can drive spin wave auto-oscillations. Such spin Hall nano-oscillators (SHNOs) hold great promise as extremely compact and broadband microwave signal generators and magnonic spin wave injectors. Here we show that SHNOs can also be mutually synchronized with unprecedented efficiency. We demonstrate mutual synchronization of up to nine individual SHNOs, each separated by 300 nm. Through further tailoring of the connection regions we can extend the synchronization range to 4 μm. The mutual synchronization is observed electrically as an increase in the power and coherence of the microwave signal, and confirmed optically using micro-Brillouin light scattering microscopy as two spin wave regions sharing the same spectral content, in agreement with our micromagnetic simulations
    corecore