28 research outputs found

    Global ocean heat content in the Last Interglacial

    Get PDF
    The Last Interglacial (129–116 thousand years ago (ka)) represents one of the warmest climate intervals of the past 800,000 years and the most recent time when sea level was metres higher than today. However, the timing and magnitude of the peak warmth varies between reconstructions, and the relative importance of individual sources that contribute to the elevated sea level (mass gain versus seawater expansion) during the Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this interval from noble gas measurements in ice cores and constrain the thermal expansion contribution to sea level. Mean ocean temperature reached its maximum value of 1.1 ± 0.3 °C warmer-than-modern values at the end of the penultimate deglaciation at 129 ka, which resulted in 0.7 ± 0.3 m of thermosteric sea-level rise relative to present level. However, this maximum in ocean heat content was a transient feature; mean ocean temperature decreased in the first several thousand years of the interglacial and achieved a stable, comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature with proxy records of abrupt transitions in the oceanic and atmospheric circulation suggests that the mean ocean temperature maximum is related to the accumulation of heat in the ocean interior during the preceding period of reduced overturning circulation

    Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Get PDF
    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties

    Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal

    Get PDF
    The Southern Ocean occupies some 14% of the planet’s surface and plays a fundamental role in the global carbon cycle and climate. It provides a direct connection to the deep ocean carbon reservoir through biogeochemical processes that include surface primary productivity, remineralisation at depth, and the upwelling of carbon-rich water masses. However, the role of these different processes in modulating past and future air-sea carbon flux remains poorly understood. A key period in this regard is the Antarctic Cold Reversal (ACR, 14.6-12.7 kyr BP), a period of mid- to high-latitude cooling that coincided with a sustained plateau in deglacial atmospheric rise in CO2 globally. Here we reconstruct high-latitude Southern Ocean surface productivity from marine derived aerosols captured in a highly-resolved horizontal ice core. Our multiproxy reconstruction reveals a coherent signal of enhanced productivity across the ACR. Transient climate modelling indicates this period coincided with maximum seasonal variability in sea-ice extent, implying that sea-ice biological feedbacks enhanced CO2 sequestration, creating a significant regional marine carbon sink that contributed to the sustained plateau in CO2 at the ACR. Our results highlights the role Antarctic sea ice plays in controlling global CO2, and demonstrates the need to incorporate such feedbacks in climate-carbon models

    Online Differential Thermal Isotope Analysis of Hydration Water in Minerals by Cavity Ringdown Laser Spectroscopy

    No full text
    We have developed a new method for measuring the isotopic composition (δ18O and δD) of different types of bonded water (e.g., molecular water, hydroxyl) contained in hydrated minerals by coupling a thermal gravimeter (TG) and a cavity ringdown laser spectrometer (CRDS). The method involves precisely step-heating a mineral sample, allowing the separation of the different types of waters that are released at different temperatures. Simultaneously, the water vapor evolved from the mineral sample is analyzed for oxygen and hydrogen isotopes by CRDS. Isotopic values for the separate peaks are calculated by integrating the product of the water amounts and its isotopic values, after correcting for background. We provide examples of the application of the differential thermal isotope analysis (DTIA) method to a variety of hydrous minerals and mineraloids including gypsum, clays, and amorphous silica (opal). The isotopic compositions of the total water evolved from a set of natural gypsum samples by DTIA are compared with the results of a conventional offline water extraction method followed by CRDS analysis. The results from both methods are in excellent agreement, and precisions (1σ) for δ18O (±0.12‰) and δD (±0.8‰) of the total gypsum hydration water from the DTIA method are comparable to that obtained by the offline method. A range of analytical challenges and solutions (e.g., spectroscopic interferences produced by VOCs in natural samples, isotopic exchange with structural oxygen, etc.) are discussed. The DTIA method has wide ranging applications for addressing fundamental problems across many disciplines in earth and planetary sciences, including paleoclimatology, sedimentology, volcanology, water exchange between the solid earth and hydrosphere, and water on Mars and other planetary bodies

    High-precision dual-inlet IRMS measurements of the stable isotopes of CO<sub>2</sub> and the N<sub>2</sub>O / CO<sub>2</sub> ratio from polar ice core samples

    No full text
    An important constraint on mechanisms of past carbon cycle variability is provided by the stable isotopic composition of carbon in atmospheric carbon dioxide (δ<sup>13</sup>C-CO<sub>2</sub>) trapped in polar ice cores, but obtaining very precise measurements has proven to be a significant analytical challenge. Here we describe a new technique to determine the δ<sup>13</sup>C of CO<sub>2</sub> at very high precision, as well as measuring the CO<sub>2</sub> and N<sub>2</sub>O mixing ratios. In this method, ancient air is extracted from relatively large ice samples (~400 g) with a dry-extraction "ice grater" device. The liberated air is cryogenically purified to a CO<sub>2</sub> and N<sub>2</sub>O mixture and analyzed with a microvolume-equipped dual-inlet IRMS (Thermo MAT 253). The reproducibility of the method, based on replicate analysis of ice core samples, is 0.02&permil; for δ<sup>13</sup>C-CO<sub>2</sub> and 2 ppm and 4 ppb for the CO<sub>2</sub> and N<sub>2</sub>O mixing ratios, respectively (1σ pooled standard deviation). Our experiments show that minimizing water vapor pressure in the extraction vessel by housing the grating apparatus in a ultralow-temperature freezer (−60 °C) improves the precision and decreases the experimental blank of the method to −0.07 ± 0.04&permil;. We describe techniques for accurate calibration of small samples and the application of a mass-spectrometric method based on source fragmentation for reconstructing the N<sub>2</sub>O history of the atmosphere. The oxygen isotopic composition of CO<sub>2</sub> is also investigated, confirming previous observations of oxygen exchange between gaseous CO<sub>2</sub> and solid H<sub>2</sub>O within the ice archive. These data offer a possible constraint on oxygen isotopic fractionation during H<sub>2</sub>O and CO<sub>2</sub> exchange below the H<sub>2</sub>O bulk melting temperature

    Latest Insights into Past Carbon Cycle Changes from CO2 and δ13Catm

    Get PDF
    CO2 represents the most important greenhouse gas released into the atmosphere as a result of human activity. The majority of our knowledge on the increase in CO2 since the start of the industrialization comes from ice cores, which complement the direct atmospheric CO2 measurements obtained at Mauna Loa since the 1950s. The combined CO2 record shows an unambiguous anthropogenic CO2 increase over the last 150 years from 280 to about 400 ppm in 2014. Values above 300 ppm are unprecedented in the long-term ice core record covering the last 800,000 years, with natural CO2 concentrations varying between interglacial and glacial bounds of about 280 and 180 ppm, respectively (Lüthi et al. 2008, Petit et al. 1999). Moreover, the increase in CO2 concentrations during the last termination shows significant fine structure (Marcott et al. 2014, Monnin et al. 2001), indicating a sequence of events of CO2 release to the atmosphere involving different processes acting at different points in time

    Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle

    Get PDF
    Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice and assess the completeness of the stratigraphic section. Using δ18O of O2 and methane concentrations, we unambiguously identify ice from the last glacial cycle, covering every climate interval from the early Holocene to the penultimate interglacial. A high-resolution transect reveals the last deglaciation and the Last Glacial Maximum (LGM) in detail. We observe large-scale deformation in the form of folding, but individual stratigraphic layers do not appear to have undergone irregular thinning. Rather, it appears that the entire LGM–deglaciation sequence has been transported from the interior of the ice sheet to the surface of Taylor Glacier relatively undisturbed. We present an age model that builds the foundation for gas studies on Taylor Glacier. A comparison with the Taylor Dome ice core confirms that the section we studied on Taylor Glacier is better suited for paleo-climate reconstructions of the LGM due to higher accumulation rates
    corecore