444 research outputs found
Nonlinear feedback control of multiple robot arms
Multiple coordinated robot arms are modeled by considering the arms: (1) as closed kinematic chains, and (2) as a force constrained mechanical system working on the same object simultaneously. In both formulations a new dynamic control method is discussed. It is based on a feedback linearization and simultaneous output decoupling technique. Applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, by choosing a general output equation, researchers can superimpose the position and velocity error feedback with the force-torque error feedback in the task space simultaneously
The RNA binding protein Cwc2 interacts directly with the U6 snRNA to link the nineteen complex to the spliceosome during pre-mRNA splicing
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA
Optimal Control for Generating Quantum Gates in Open Dissipative Systems
Optimal control methods for implementing quantum modules with least amount of
relaxative loss are devised to give best approximations to unitary gates under
relaxation. The potential gain by optimal control using relaxation parameters
against time-optimal control is explored and exemplified in numerical and in
algebraic terms: it is the method of choice to govern quantum systems within
subspaces of weak relaxation whenever the drift Hamiltonian would otherwise
drive the system through fast decaying modes. In a standard model system
generalising decoherence-free subspaces to more realistic scenarios,
openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of
at most 15% for a standard Trotter expansion. As additional benefit it requires
control fields orders of magnitude lower than the bang-bang decouplings in the
latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure
Degrees of controllability for quantum systems and applications to atomic systems
Precise definitions for different degrees of controllability for quantum
systems are given, and necessary and sufficient conditions are discussed. The
results are applied to determine the degree of controllability for various
atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio
No association between islet cell antibodies and coxsackie B, mumps, rubella and cytomegalovirus antibodies in non-diabetic individuals aged 7–19 years
Viral antibodies were tested in a cohort of 44 isletcell antibody-positive individuals age 7–19 years, and 44 of their islet cell antibody-negative age and sex-matched classmates selected from a population study of 4208 pupils who had been screened for islet cell antibodies. Anti-coxsackie B1-5 IgM responses were detected in 14 of 44 (32%) of the islet cell antibody-positive subjects and in 7 of 44 (16%) control subjects. This difference did not reach the level of statistical significance. None of the islet cell antibody-positive subjects had specific IgM antibodies to mumps, rubella, or cytomegalovirus. There was also no increase in the prevalence or the mean titres of anti-mumps-IgG or IgA and anti-cytomegalovirus-IgG in islet cell antibody-positive subjects compared to control subjects. These results do not suggest any association between islet cell antibodies, and possibly insulitis, with recent mumps, rubella or cytomegalo virus infection. Further studies are required to clarify the relationship between islet cell antibodies and coxsackie B virus infections
Insulin autoantibodies as determined by competitive radiobinding assay are positively correlated with impaired beta-cell function — The Ulm-Frankfurt population study
Out of a random population of 4208 non-diabetic pupils without a family history of Type I diabetes 44 (1.05%) individuals had islet cell antibody (ICA) levels greater or equal to 5 Juvenile Diabetes Foundation (JDF) units. 39 of these ICA-positives could be repeatedly tested for circulating insulin autoantibodies (CIAA) using a competitive radiobinding assay. The results were compared with the insulin responses in the intravenous glucose tolerance tests (IVGTT) and with HLA types. Six pupils were positive for CIAA. All of them had complement-fixing ICA, and 5 of them were HLA-DR4 positive. Three of the 6 showed a first-phase insulin response below the first percentile of normal controls. Our data indicate that in population-based studies CIAA can be considered as a high risk marker for impaired beta-cell function in non-diabetic ICA-positive individuals
GLOBAL ASYMPTOTIC STABILIZATION OF THE SPINNING TOP
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57818/1/WanOCAMTop1995.pd
The opposite of Dante's hell? The transfer of ideas for social housing at international congresses in the 1850s–1860s
With the advent of industrialization, the question of developing adequate housing for the emergent working classes became more pressing than before. Moreover, the problem of unhygienic houses in industrial cities did not stop at the borders of a particular nation-state; sometimes literally as pandemic diseases spread out 'transnationally'. It is not a coincidence that in the nineteenth century the number of international congresses on hygiene and social topics expanded substantially. However, the historiography about social policy in general and social housing in particular, has often focused on individual cases because of the different pace of industrial and urban development and is thus dominated by national perspectives. In this paper, I elaborate on transnational exchange processes and local adaptations and transformations. I focus on the transfer of the housing model of SOMCO in Mulhouse, (a French house building association) during social international congresses. I examine whether cross-national networking enabled and facilitated the implementation of ideas on the local scale. I will elaborate on the transmission and the local adaptation of the Mulhouse-model in Belgium. Convergences, divergences, and different factors that influenced the local transformations (personal choice, political situation, socioeconomic circumstances) will be taken into accoun
An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing
Low concentrations of ice nucleating particles (INPs) are thought to be important for the properties of mixed phase clouds, but their detection is challenging. While instruments to quantify INPs online can provide relatively high time resolution data, they typically cannot quantify very low INP concentrations. Furthermore, typical online instruments tend to report data at a single defined set of conditions. Hence, there is a need for instruments where INP concentrations of less than 0.01 L-1 can be routinely and efficiently determined. The use of larger volumes of suspension in drop assays increases the sensitivity of an experiment to rarer INPs or rarer active sites due to the increase in aerosol or surface area of particulates per droplet. Here we describe and characterise the InfraRed-Nucleation by Immersed Particles Instrument (IR-NIPI), a new immersion freezing assay that makes use of IR emissions to determine the freezing temperature of individual 50μL droplets each contained in a well of a 96-well plate. Using an IR camera allows the temperature of individual aliquots to be monitored. Freezing temperatures are determined by detecting the sharp rise in well temperature associated with the release of heat caused by freezing. In this paper we first present the calibration of the IR temperature measurement, which makes use of the freezing period after initial nucleation when wells warm and their temperature is determined by the ice-liquid equilibrium temperature, i.e. 0°C when the water activity is ~1. We then tested the temperature calibration using ~100 μm chips of K-feldspar, by immersing these chips in 1 μL droplets on an established cold stage (μL-NIPI) as well as in 50 μL droplets on IR-NIPI; the results were consistent with one another indicating no bias in the reported freezing temperature. In addition we present measurements of the efficiency of the mineral dust NX-illite and a sample of atmospheric aerosol collected on a filter in the city of Leeds. NX-illite results are consistent with literature data and the atmospheric INP concentrations were in good agreement with the results from the μL-NIPI instrument. This demonstrates the utility of this approach, which offers a relatively high throughput of sample analysis and access to low INP concentrations
- …