156 research outputs found

    Statistical analysis plan for the Stroke Oxygen Study (SO₂S): a multi-center randomized controlled trial to assess whether routine oxygen supplementation in the first 72 hours after a stroke improves long-term outcome.

    Get PDF
    BACKGROUND: The Stroke Oxygen Study (SO₂S) is a multi-center randomized controlled trial of oxygen supplementation in patients with acute stroke. The main hypothesis for the trial is that fixed-dose oxygen treatment during the first 3 days after an acute stroke improves outcome. The secondary hypothesis is that restricting oxygen supplementation to night time only is more effective than continuous supplementation. This paper describes the statistical analysis plan for the study. METHODS AND DESIGN: Patients (n = 8000) are randomized to three groups: (1) continuous oxygen supplementation for 72 hours; (2) nocturnal oxygen supplementation for three nights; and (3) no routine oxygen supplementation. Outcomes are recorded at 7 days, 90 days, 6 months, and 12 months. The primary outcome measure is the modified Rankin scale at 90 days. Data will be analyzed according to the intention-to-treat principle. Methods of statistical analysis are described, including the handling of missing data, the covariates used in adjusted analyses, planned subgroups analyses, and planned sensitivity analyses. TRIAL REGISTRATION: This trial is registered with the ISRCTN register, number ISRCTN52416964 (30 September 2005)

    The stroke oxygen pilot study: a randomized control trial of the effects of routine oxygen supplementation early after acute stroke--effect on key outcomes at six months

    Get PDF
    Introduction: Post-stroke hypoxia is common, and may adversely affect outcome. We have recently shown that oxygen supplementation may improve early neurological recovery. Here, we report the six-month outcomes of this pilot study. Methods: Patients with a clinical diagnosis of acute stroke were randomized within 24 h of admission to oxygen supplementation at 2 or 3 L/min for 72 h or to control treatment (room air). Outcomes (see below) were assessed by postal questionnaire at 6 months. Analysis was by intention-to-treat, and statistical significance was set at p#0.05. Results: Out of 301 patients randomized two refused/withdrew consent and 289 (148 in the oxygen and 141 in the control group) were included in the analysis: males 44%, 51%; mean (SD) age 73 (12), 71 (12); median (IQR) National Institutes of Health Stroke Scale score 6 (3, 10), 5 (3, 10) for the two groups respectively. At six months 22 (15%) patients in the oxygen group and 20 (14%) in the control group had died; mean survival in both groups was 162 days (p= 0.99). Median (IQR) scores for the primary outcome, the modified Rankin Scale, were 3 (1, 5) and 3 (1, 4) for the oxygen and control groups respectively. The covariate-adjusted odds ratio was 1.04 (95% CI 0.67, 1.60), indicating that the odds of a lower (i.e. better) score were non-significantly higher in the oxygen group (p= 0.86). The mean differences in the ability to perform basic (Barthel Index) and extended activities of daily living (NEADL), and quality of life (EuroQol) were also non-significant. Conclusions: None of the key outcomes differed at 6 months between the groups. Although not statistically significant and generally of small magnitude, the effects were predominantly in favour of the oxygen group; a larger trial, powered to show differences in longer-term functional outcomes, is now on-going. Trial Registration: Controlled-Trials.com ISRCTN12362720; Eudract.ema.europa.eu 2004-001866-4

    Routine low-dose continuous or nocturnal oxygen for people with acute stroke: three-arm Stroke Oxygen Supplementation RCT.

    Get PDF
    BACKGROUND: Stroke is a major cause of death and disability worldwide. Hypoxia is common after stroke and is associated with worse outcomes. Oxygen supplementation could prevent hypoxia and secondary brain damage. OBJECTIVES: (1) To assess whether or not routine low-dose oxygen supplementation in patients with acute stroke improves outcome compared with no oxygen; and (2) to assess whether or not oxygen given at night only, when oxygen saturation is most likely to be low, is more effective than continuous supplementation. DESIGN: Multicentre, prospective, randomised, open, blinded-end point trial. SETTING: Secondary care hospitals with acute stroke wards. PARTICIPANTS: Adult stroke patients within 24 hours of hospital admission and 48 hours of stroke onset, without definite indications for or contraindications to oxygen or a life-threatening condition other than stroke. INTERVENTIONS: Allocated by web-based minimised randomisation to: (1) continuous oxygen: oxygen via nasal cannula continuously (day and night) for 72 hours after randomisation at a flow rate of 3 l/minute if baseline oxygen saturation was ≤ 93% or 2 l/minute if > 93%; (2) nocturnal oxygen: oxygen via nasal cannula overnight (21:00-07:00) for three consecutive nights. The flow rate was the same as the continuous oxygen group; and (3) control: no routine oxygen supplementation unless required for reasons other than stroke. MAIN OUTCOME MEASURES: Primary outcome: disability assessed by the modified Rankin Scale (mRS) at 3 months by postal questionnaire (participant aware, assessor blinded). Secondary outcomes at 7 days: neurological improvement, National Institutes of Health Stroke Scale (NIHSS), mortality, and the highest and lowest oxygen saturations within the first 72 hours. Secondary outcomes at 3, 6, and 12 months: mortality, independence, current living arrangements, Barthel Index, quality of life (European Quality of Life-5 Dimensions, three levels) and Nottingham Extended Activities of Daily Living scale by postal questionnaire. RESULTS: In total, 8003 patients were recruited between 24 April 2008 and 17 June 2013 from 136 hospitals in the UK [continuous,n = 2668; nocturnal,n = 2667; control,n = 2668; mean age 72 years (standard deviation 13 years); 4398 (55%) males]. All prognostic factors and baseline characteristics were well matched across the groups. Eighty-two per cent had ischaemic strokes. At baseline the median Glasgow Coma Scale score was 15 (interquartile range 15-15) and the mean and median NIHSS scores were 7 and 5 (range 0-34), respectively. The mean oxygen saturation at randomisation was 96.6% in the continuous and nocturnal oxygen groups and 96.7% in the control group. Primary outcome: oxygen supplementation did not reduce disability in either the continuous or the nocturnal oxygen groups. The unadjusted odds ratio for a better outcome (lower mRS) was 0.97 [95% confidence interval (CI) 0.89 to 1.05;p = 0.5] for the combined oxygen groups (both continuous and nocturnal together) (n = 5152) versus the control (n = 2567) and 1.03 (95% CI 0.93 to 1.13;p = 0.6) for continuous versus nocturnal oxygen. Secondary outcomes: oxygen supplementation significantly increased oxygen saturation, but did not affect any of the other secondary outcomes. LIMITATIONS: Severely hypoxic patients were not included. CONCLUSIONS: Routine low-dose oxygen supplementation in stroke patients who are not severely hypoxic is safe, but does not improve outcome after stroke. FUTURE WORK: To investigate the causes of hypoxia and develop methods of prevention. TRIAL REGISTRATION: Current Controlled Trials ISRCTN52416964 and European Union Drug Regulating Authorities Clinical Trials (EudraCT) number 2006-003479-11. FUNDING DETAILS: This project was funded by the National Institute for Health Research (NIHR) Research for Patient Benefit and Health Technology Assessment programmes and will be published in full inHealth Technology Assessment; Vol. 22, No. 14. See the NIHR Journals Library website for further project information

    Effect of Routine Low-Dose Oxygen Supplementation on Death and Disability in Adults With Acute Stroke: The Stroke Oxygen Study Randomized Clinical Trial.

    Get PDF
    Importance: Hypoxia is common in the first few days after acute stroke, is frequently intermittent, and is often undetected. Oxygen supplementation could prevent hypoxia and secondary neurological deterioration and thus has the potential to improve recovery. Objective: To assess whether routine prophylactic low-dose oxygen therapy was more effective than control oxygen administration in reducing death and disability at 90 days, and if so, whether oxygen given at night only, when hypoxia is most frequent, and oxygen administration is least likely to interfere with rehabilitation, was more effective than continuous supplementation. Design, Setting, and Participants: In this single-blind randomized clinical trial, 8003 adults with acute stroke were enrolled from 136 participating centers in the United Kingdom within 24 hours of hospital admission if they had no clear indications for or contraindications to oxygen treatment (first patient enrolled April 24, 2008; last follow-up January 27, 2015). Interventions: Participants were randomized 1:1:1 to continuous oxygen for 72 hours (n = 2668), nocturnal oxygen (21:00 to 07:00 hours) for 3 nights (n = 2667), or control (oxygen only if clinically indicated; n = 2668). Oxygen was given via nasal tubes at 3 L/min if baseline oxygen saturation was 93% or less and at 2 L/min if oxygen saturation was greater than 93%. Main Outcomes and Measures: The primary outcome was reported using the modified Rankin Scale score (disability range, 0 [no symptoms] to 6 [death]; minimum clinically important difference, 1 point), assessed at 90 days by postal questionnaire (participant aware, assessor blinded). The modified Rankin Scale score was analyzed by ordinal logistic regression, which yields a common odds ratio (OR) for a change from one disability level to the next better (lower) level; OR greater than 1.00 indicates improvement. Results: A total of 8003 patients (4398 (55%) men; mean [SD] age, 72 [13] years; median National Institutes of Health Stroke Scale score, 5; mean baseline oxygen saturation, 96.6%) were enrolled. The primary outcome was available for 7677 (96%) participants. The unadjusted OR for a better outcome (calculated via ordinal logistic regression) was 0.97 (95% CI, 0.89 to 1.05; P = .47) for oxygen vs control, and the OR was 1.03 (95% CI, 0.93 to 1.13; P = .61) for continuous vs nocturnal oxygen. No subgroup could be identified that benefited from oxygen. At least 1 serious adverse event occurred in 348 (13.0%) participants in the continuous oxygen group, 294 (11.0%) in the nocturnal group, and 322 (12.1%) in the control group. No significant harms were identified. Conclusions and Relevance: Among nonhypoxic patients with acute stroke, the prophylactic use of low-dose oxygen supplementation did not reduce death or disability at 3 months. These findings do not support low-dose oxygen in this setting. Trial Registration: ISRCTN Identifier: ISRCTN52416964

    Isosorbide Mononitrate and Cilostazol Treatment in Patients With Symptomatic Cerebral Small Vessel Disease: The Lacunar Intervention Trial-2 (LACI-2) Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Cerebral small vessel disease (cSVD) is a common cause of stroke (lacunar stroke), is the most common cause of vascular cognitive impairment, and impairs mobility and mood but has no specific treatment. OBJECTIVE: To test the feasibility, drug tolerability, safety, and effects of 1-year isosorbide mononitrate (ISMN) and cilostazol treatment on vascular, functional, and cognitive outcomes in patients with lacunar stroke. DESIGN, SETTING, AND PARTICIPANTS: The Lacunar Intervention Trial-2 (LACI-2) was an investigator-initiated, open-label, blinded end-point, randomized clinical trial with a 2 × 2 factorial design. The trial aimed to recruit 400 participants from 26 UK hospital stroke centers between February 5, 2018, and May 31, 2021, with 12-month follow-up. Included participants had clinical lacunar ischemic stroke, were independent, were aged older than 30 years, had compatible brain imaging findings, had capacity to consent, and had no contraindications to (or indications for) the study drugs. Data analysis was performed on August 12, 2022. INTERVENTIONS: All patients received guideline stroke prevention treatment and were randomized to ISMN (40-60 mg/d), cilostazol (200 mg/d), ISMN-cilostazol (40-60 and 200 mg/d, respectively), or no study drug. MAIN OUTCOMES: The primary outcome was recruitment feasibility, including retention at 12 months. Secondary outcomes were safety (death), efficacy (composite of vascular events, dependence, cognition, and death), drug adherence, tolerability, recurrent stroke, dependence, cognitive impairment, quality of life (QOL), and hemorrhage. RESULTS: Of the 400 participants planned for this trial, 363 (90.8%) were recruited. Their median age was 64 (IQR, 56.0-72.0) years; 251 (69.1%) were men. The median time between stroke and randomization was 79 (IQR, 27.0-244.0) days. A total of 358 patients (98.6%) were retained in the study at 12 months, with 257 of 272 (94.5%) taking 50% or more of the allocated drug. Compared with those participants not receiving that particular drug, neither ISMN (adjusted hazard ratio [aHR], 0.80 [95% CI, 0.59 to 1.09]; P = .16) nor cilostazol (aHR, 0.77 [95% CI, 0.57 to 1.05]; P = .10) alone reduced the composite outcome in 297 patients. Isosorbide mononitrate reduced recurrent stroke in 353 patients (adjusted odds ratio [aOR], 0.23 [95% CI, 0.07 to 0.74]; P = .01) and cognitive impairment in 308 patients (aOR, 0.55 [95% CI, 0.36 to 0.86]; P = .008). Cilostazol reduced dependence in 320 patients (aHR, 0.31 [95% CI, 0.14 to 0.72]; P = .006). Combination ISMN-cilostazol reduced the composite (aHR, 0.58 [95% CI, 0.36 to 0.92]; P = .02), dependence (aOR, 0.14 [95% CI, 0.03 to 0.59]; P = .008), and any cognitive impairment (aOR, 0.44 [95% CI, 0.23 to 0.85]; P = .02) and improved QOL (adjusted mean difference, 0.10 [95% CI, 0.03 to 0.17]; P = .005) in 153 patients. There were no safety concerns. CONCLUSIONS AND RELEVANCE: These results show that the LACI-2 trial was feasible and ISMN and cilostazol were well tolerated and safe. These agents may reduce recurrent stroke, dependence, and cognitive impairment after lacunar stroke, and they could prevent other adverse outcomes in cSVD. Therefore, both agents should be tested in large phase 3 trials. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03451591
    corecore