333 research outputs found

    An Alternative Method to Deduce Bubble Dynamics in Single Bubble Sonoluminescence Experiments

    Get PDF
    In this paper we present an experimental approach that allows to deduce the important dynamical parameters of single sonoluminescing bubbles (pressure amplitude, ambient radius, radius-time curve) The technique is based on a few previously confirmed theoretical assumptions and requires the knowledge of quantities such as the amplitude of the electric excitation and the phase of the flashes in the acoustic period. These quantities are easily measurable by a digital oscilloscope, avoiding the cost of expensive lasers, or ultrafast cameras of previous methods. We show the technique on a particular example and compare the results with conventional Mie scattering. We find that within the experimental uncertainties these two techniques provide similar results.Comment: 8 pages, 5 figures, submitted to Phys. Rev.

    Approximating Mexican highways with slime mould

    Full text link
    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. During its foraging behavior the cell spans spatially distributed sources of nutrients with a protoplasmic network. Geometrical structure of the protoplasmic networks allows the plasmodium to optimize transport of nutrients between remote parts of its body. Assuming major Mexican cities are sources of nutrients how much structure of Physarum protoplasmic network correspond to structure of Mexican Federal highway network? To find an answer undertook a series of laboratory experiments with living Physarum polycephalum. We represent geographical locations of major cities by oat flakes, place a piece of plasmodium in Mexico city area, record the plasmodium's foraging behavior and extract topology of nutrient transport networks. Results of our experiments show that the protoplasmic network formed by Physarum is isomorphic, subject to limitations imposed, to a network of principle highways. Ideas and results of the paper may contribute towards future developments in bio-inspired road planning

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Sonoluminescence as a QED vacuum effect. I: The Physical Scenario

    Get PDF
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of changes in the properties of the quantum-electrodynamic (QED) vacuum state. This mechanism is most often phrased in terms of changes in the Casimir Energy: changes in the distribution of zero-point energies and has recently been the subject of considerable controversy. The present paper further develops this quantum-vacuum approach to sonoluminescence: We calculate Bogolubov coefficients relating the QED vacuum states in the presence of a homogeneous medium of changing dielectric constant. In this way we derive an estimate for the spectrum, number of photons, and total energy emitted. We emphasize the importance of rapid spatio-temporal changes in refractive indices, and the delicate sensitivity of the emitted radiation to the precise dependence of the refractive index as a function of wavenumber, pressure, temperature, and noble gas admixture. Although the physics of the dynamical Casimir effect is a universal phenomenon of QED, specific experimental features are encoded in the condensed matter physics controlling the details of the refractive index. This calculation places rather tight constraints on the possibility of using the dynamical Casimir effect as an explanation for sonoluminescence, and we are hopeful that this scenario will soon be amenable to direct experimental probes. In a companion paper we discuss the technical complications due to finite-size effects, but for reasons of clarity in this paper we confine attention to bulk effects.Comment: 25 pages, LaTeX 209, ReV-TeX 3.2, eight figures. Minor revisions: Typos fixed, references updated, minor changes in numerical estimates, minor changes in some figure

    Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique

    Full text link
    The theoretical results regarding the ``transition frequencies'' of two acoustically interacting bubbles have been verified numerically. The theory provided by Ida [Phys. Lett. A 297 (2002) 210] predicted the existence of three transition frequencies per bubble, each of which has the phase difference of π/2\pi /2 between a bubble's pulsation and the external sound field, while previous theories predicted only two natural frequencies which cause such phase shifts. Namely, two of the three transition frequencies correspond to the natural frequencies, while the remaining does not. In a subsequent paper [M. Ida, Phys. Rev. E 67 (2003) 056617], it was shown theoretically that transition frequencies other than the natural frequencies may cause the sign reversal of the secondary Bjerknes force acting between pulsating bubbles. In the present study, we employ a direct numerical simulation technique that uses the compressible Navier-Stokes equations with a surface-tension term as the governing equations to investigate the transition frequencies of two coupled bubbles by observing their pulsation amplitudes and directions of translational motion, both of which change as the driving frequency changes. The numerical results reproduce the recent theoretical predictions, validating the existence of the transition frequencies not corresponding to the natural frequency.Comment: 18 pages, 8 figures, in pres

    An objective comparison of cell-tracking algorithms

    Get PDF
    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge

    Joule-heating Effects In the Amorphous Fe40ni40b20 Alloy

    Get PDF
    The effects of Joule heating on the amorphous Fe40Ni40B20 alloy are investigated by measuring the time behavior of the electrical resistance of ribbon strips during such a treatment. The structural transformations occurring in subsequent stages of the process are studied by means of x-ray-diffraction, differential-scanning-calorimetry, and magnetic-permeability measurements. A continuous evolution from a fully amorphous to a fully crystalline structure may be followed. The crystallization mechanisms observed in Joule-heated samples differ from the ones occurring under conventional heating conditions. The electrical resistance displays a bump in the course of Joule heating. A quantitative model relating such a bump to the extra heat released to the sample by fast crystallization is proposed and discussed
    corecore