498 research outputs found
Recommended from our members
Evaluation of Non-photorealistic 3D Urban Models for Mobile Device Navigation.
Biomass burning and urban air pollution over the Central Mexican Plateau
Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and one third of the enhancement in benzene, reactive nitrogen, and carbon monoxide in the outflow from the plateau. The combination of biomass burning and anthropogenic emissions will affect ozone chemistry in the MC outflow
A framework for digital sunken relief generation based on 3D geometric models
Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose
Emissions from biomass burning in the Yucatan
In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicators of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually high amounts of SO2 and particle chloride, likely due to a strong marine influence on this peninsula. As smoke from one fire aged, the ratio ΔO3/ΔCO increased to ~15% in 1×10^7 molecules/cm^3) that were likely caused in part by high initial HONO (~10% of NO_y). Thus, more research is needed to understand critical post emission processes for the second-largest trace gas source on Earth. It is estimated that ~44 Tg of biomass burned in the Yucatan in the spring of 2006. Mexican BB (including Yucatan BB) and urban emissions from the Mexico City area can both influence the March-May air quality in much of Mexico and the US
Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood-and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources
The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19gkg-1 with major contributions from OC (7%), sulfate expected to be in the form of sulfuric acid (31.9%), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13gkg-1, with major contributions from OC (63.2%), sulfate (23.4%), and ammonium (16%). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4±1.2gkg-1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125±23gkg-1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from three-stone cooking fires (7.6-73gkg-1), followed by traditional mud stoves (5.3-19.7gkg-1), mud stoves with a chimney for exhaust (3.0-6.8gkg-1), rocket stoves (1.5-7.2gkg-1), induced-draft stoves (1.2-5.7gkg-1), and the bhuse chulo stove (3.2gkg-1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8±1.3 to 0.71±0.45gkg-1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories
Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany
The impact of wood combustion on ambient aerosols was investigated in
Augsburg, Germany during a winter measurement campaign of a six-week period.
Special attention was paid to the high time resolution observations of wood
combustion with different mass spectrometric methods. Here we present and
compare the results from an Aerodyne aerosol mass spectrometer (AMS) and gas
chromatographic – mass spectrometric (GC-MS) analysed PM<sub>1</sub> filters on an
hourly basis. This includes source apportionment of the AMS derived organic
matter (OM) using positive matrix factorisation (PMF) and analysis of
levoglucosan as wood combustion marker, respectively.
<br><br>
During the measurement period nitrate and OM mass are the main contributors
to the defined submicron particle mass of AMS and Aethalometer with 28%
and 35%, respectively. Wood combustion organic aerosol (WCOA) contributes
to OM with 23% on average and 27% in the evening and night time.
Conclusively, wood combustion has a strong influence on the organic matter
and overall aerosol composition. Levoglucosan accounts for 14% of WCOA
mass with a higher percentage in comparison to other studies. The ratio
between the mass of levoglucosan and organic carbon amounts to 0.06.
<br><br>
This study is unique in that it provides a one-hour time resolution
comparison between the wood combustion results of the AMS and the GC-MS
analysed filter method at a PM<sub>1</sub> particle size range. The comparison of
the concentration variation with time of the PMF WCOA factor, levoglucosan
estimated by the AMS data and the levoglucosan measured by GC-MS is highly
correlated (<i>R</i><sup>2</sup> = 0.84), and a detailed discussion on the contributors
to the wood combustion marker ion at mass-to-charge ratio 60 is given. At
the end, both estimations, the WCOA factor and the levoglucosan
concentration estimated by AMS data, allow to observe the variation with
time of wood combustion emissions (gradient correlation with GC-MS
levoglucosan of <i>R</i><sup>2</sup> = 0.84). In the case of WCOA, it provides the
estimated magnitude of wood combustion emission. Quantitative estimation of
the levoglucosan concentration from the AMS data is problematic due to its
overestimation in comparison to the levoglucosan measured by the GC-MS
Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer
A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1&plusmn;1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO<sub>2</sub> emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C<sub>2</sub>H<sub>4</sub>O<sub>2</sub><sup>+</sup> at mass to charge ratio <i>m/z</i> 60, a commonly used marker for primary emissions of wood burning. This contribution at <i>m/z</i> 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19&minus;0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at <i>m/z</i> 43 (<i>f</i> 43) to the total organic mass spectrum. The non-oxidized fragment C<sub>3</sub>H<sub>7</sub><sup>+</sup> has a considerable contribution at <i>m/z</i> 43 for the fresh OA with an increasing contribution of the oxygenated ion C<sub>2</sub>H<sub>3</sub>O<sup>+</sup> during aging. After five hours of aging, the OA has a rather low C<sub>2</sub>H<sub>3</sub>O<sup>+</sup> signal for a given CO<sub>2</sub><sup>+</sup> fraction, possibly indicating a higher ratio of acid to non-acid oxygenated compounds in wood burning OA compared to other oxygenated organic aerosol (OOA)
Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 745–761, doi:10.1002/2016JC012326.Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ∼8.5, significantly elevated above that of the surrounding open ocean (∼8.0–8.1) as a consequence of daytime NEP (up to 112 mmol C m−2 h−1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m−2 d−1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m−2 h−1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.NSF Grant Number: 12205292017-07-3
- …