317 research outputs found

    Influence of Pressure and Temperature on X-Ray Induced Photoreduction of Nanocrystalline CuO

    Get PDF
    The authors are grateful to Prof. Alain Polian for providing NDAC cell. Parts of the present research have been carried out at the ODE beamline at SOLEIL.X-ray absorption spectroscopy at the Cu K-edge is used to study X-ray induced photoreduction of copper oxide to metallic copper. Although no photoreduction has been observed in microcrystalline copper oxide, we have found that the photoreduction kinetics of nanocrystalline CuO depends on the crystallite size, temperature and pressure. The rate of photoreduction increases for smaller nanoparticles but decreases at low temperature and higher pressure.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Short-range order of compressed amorphous GeSe2

    Get PDF
    The structure of amorphous GeSe2 (a-GeSe2) has been studied by means of a combination of two-edges X-ray absorption spectroscopy (XAS) and angle-dispersive X-ray diffraction under pressures up to about 30 GPa. Multiple-edge XAS data-analysis of a-GeSe2 at ambient conditions allowed us to reconstruct and compare the first-neighbor distribution function with previous results obtained by neutron diffraction with isotopic substitution. GeSe2 is found to remain amorphous up to the highest pressures attained, and a reversible 1.5 eV red-shift of the Ge K-edge energy indicating metallization, occurs between 10 GPa and 15 GPa. Two compression stages are identified by XAS structure refinement. First, a decrease of the first-neighbor distances up to about 10 GPa, in the same pressure region of a previously observed breakdown of the intermediate-range order. Second, an increase of the Ge-Se distances, bond disorder, and of the coordination number. This stage is related to a reversible non-isostructural transition involving a gradual conversion from tetra- to octa-hedral geometry which is not yet fully completed at 30 GPa

    Wear resistance of nano-polycrystalline diamond with various hexagonal diamond contents

    No full text
    Wear resistance of nano-polycrystalline diamond (NPD) rods containing various amounts of hexagonal diamond has been tested with a new method for practical evaluation of the wear–resistance rate of superhard ceramics, in addition to the measurements of their Knoop hardness. The wear resistance of NPD has been found to increase with increasing synthesis temperature and accordingly decreasing proportion of hexagonal diamond. A slight increase in Knoop hardness with the synthesis temperature also has been observed for these samples, consistent with the results of the wear–resistance measurements. These results suggest that the presence of hexagonal diamond would not yield any observable increase in both hardness and wear resistance of NPD, contradictory to a recent prediction suggesting that hexagonal diamond is harder than cubic diamond. It is also demonstrated that NPD is superior to single crystal diamond in terms of relatively homogeneous wearing without any significant chipping/cracking.Зносостійкість нано-полікристалічних алмазних (НПА) стрижнів, з різним вмістом гексагонального алмазу, була протестована новим методом практичної оцінки швидкості зносу надтвердої кераміки, додатково до вимірюваня їх твердості по Кнупу. Було виявлено, що зносостійкість НПА збільшується зі зростанням температури синтезу і, відповідно, зі зменшенням частки гексагональних алмазів. Також, відповідно до результатів вимірювань зносостійкості, для цих зразків спостерігалося невелике збільшення твердості по Кнупу з температурою синтезу. Ці результати дозволяють припустити, що присутність гексагональних алмазів не приводить до будь-якого помітного збільшення як твердості, так і зносостійкості НПА, що суперечить недавньому припущенню про те, що гексагональний алмаз твердіший, ніж кубічний. Також показано, що НПА перевершує монокристал алмазу з точки зору відносно однорідного зношування без значних відколів/тріщин.Износостойкость нано-поликристаллических алмазных (НПА) стержней, с различным содержанием гексагонального алмаза, была протестирована новым методом практической оценки скорости износа сверхтвердой керамики, в дополнение к измерениям их твердости по Кнупу. Было обнаружено, что износостойкость НПА увеличивается с ростом температуры синтеза и, соответственно, с уменьшением доли гексагональных алмазов. Также, в соответствии с результатами измерений износостойкости, для этих образцов наблюдалось небольшое увеличение твердости по Кнупу с температурой синтеза. Эти результаты позволяют предположить, что присутствие гексагональных алмазов не приводит к какому-либо заметному увеличению как твердости, так и износостойкости НПА, что противоречит недавнему предположению о том, что гексагональный алмаз тверже, чем кубический. Также показано, что НПА превосходит монокристалл алмаза с точки зрения относительно однородного изнашивания без значительных сколов/трещин

    Interplay of the electronic and lattice degrees of freedom in A_{1-x}Fe_{2-y}Se_{2} superconductors under pressure

    Full text link
    The local structure and electronic properties of Rb1x_{1-x}Fe2y_{2-y}Se2_2 are investigated by means of site selective polarized x-ray absorption spectroscopy at the iron and selenium K-edges as a function of pressure. A combination of dispersive geometry and novel nanodiamond anvil pressure-cell has permitted to reveal a step-like decrease in the Fe-Se bond distance at p11p\simeq11 GPa. The position of the Fe K-edge pre-peak, which is directly related to the position of the chemical potential, remains nearly constant until 6\sim6 GPa, followed by an increase until p11p\simeq 11 GPa. Here, as in the local structure, a step-like decrease of the chemical potential is seen. Thus, the present results provide compelling evidence that the origin of the reemerging superconductivity in A1xA_{1-x}Fe2y_{2-y}Se2_2 in vicinity of a quantum critical transition is caused mainly by the changes in the electronic structure

    Crystal-field mediated electronic transitions of EuS up to 35 GPa

    Get PDF
    An advanced experimental and theoretical model to explain the correlation between the electronic and local structure of Eu2+ in two different environments within a same compound, EuS, is presented. EuX monochalcogenides (X: O, S, Se, Te) exhibit anomalies in all their properties around 14 GPa with a semiconductor to metal transition. Although it is known that these changes are related to the 4f75d0 → 4f65d1 electronic transition, no consistent model of the pressure-induced modifications of the electronic structure currently exists. We show, by optical and x-ray absorption spectroscopy, and by ab initio calculations up to 35 GPa, that the pressure evolution of the crystal field plays a major role in triggering the observed electronic transitions from semiconductor to the half-metal and finally to the metallic state

    Interplay between local structure and electronic properties on CuO under pressure

    Get PDF
    The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab-initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs within CuO4_4 square planar units and two elongated apical Cu-O bonds. The CuO4_4 square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye Waller, \sigma2^2) of the elongated Cu-O path is observed from 5 GPa up to 13 GPa, when a drastic reduction takes place in \sigma2^2. This is interpreted in terms of local dynamic disorder along the apical Cu-O path. At higher pressures (P>13 GPa), the local structure of Cu2+^{2+} changes from a 4-fold square planar to a 4+2 Jahn-Teller distorted octahedral ion. We interpret these results in terms of the tendency of the Cu2+^{2+} ion to form favorable interactions with the apical O atoms. Also, the decrease in Cu-O apical distance caused by compression softens the normal mode associated with the out-of-plane Cu movement. CuO is predicted to have an anomalous rise in permittivity with pressure as well as modest piezoelectricity in the 5-13 GPa pressure range. In addition, the near edge features in our XAS experiment show a discontinuity and a change of tendency at 5 GPa. For P < 5 GPa the evolution of the edge shoulder is ascribed to purely electronic effects which also affect the charge transfer integral. This is linked to a charge migration from the Cu to O, but also to an increase of the energy band gap, which show a change of tendency occurring also at 5 GPa

    A hierarchical research by large-scale and ab initio electronic structure theories -- Si and Ge cleavage and stepped (111)-2x1 surfaces --

    Full text link
    The ab initio calculation with the density functional theory and plane-wave bases is carried out for stepped Si(111)-2x1 surfaces that were predicted in a cleavage simulation by the large-scale (order-N) electronic structure theory (T. Hoshi, Y. Iguchi and T. Fujiwara, Phys. Rev. B72 (2005) 075323). The present ab initio calculation confirms the predicted stepped structure and its bias-dependent STM image. Moreover, two (meta)stable step-edge structures are found and compared. The investigation is carried out also for Ge(111)-2x1 surfaces, so as to construct a common understanding among elements. The present study demonstrates the general importance of the hierarchical research between large-scale and ab initio electronic structure theories.Comment: 5 pages, 4 figures, to appear in Physica

    A new internally heated diamond anvil cell system for time-resolved optical and x-ray measurements

    Get PDF
    We have developed a new internally heated diamond anvil cell (DAC) system for in situ high-pressure and high-temperature x-ray and optical experiments. We have adopted a self-heating W/Re gasket design allowing for both sample confinement and heating. This solution has been seldom used in the past but proved to be very efficient to reduce the size of the heating spot near the sample region, improving heating and cooling rates as compared to other resistive heating strategies. The system has been widely tested under high-temperature conditions by performing several thermal emission measurements. A robust relationship between electric power and average sample temperature inside the DAC has been established up to about 1500 K by a measurement campaign on different simple substances. A micro-Raman spectrometer was used for various in situ optical measurements and allowed us to map the temperature distribution of the sample. The distribution resulted to be uniform within the typical uncertainty of these measurements (5% at 1000 K). The high-temperature performances of the DAC were also verified in a series of XAS (x-ray absorption spectroscopy) experiments using both nano-polycrystalline and single-crystal diamond anvils. XAS measurements of germanium at 3.5 GPa were obtained in the 300 K-1300 K range, studying the melting transition and nucleation to the crystal phase. The achievable heating and cooling rates of the DAC were studied exploiting a XAS dispersive setup, collecting series of near-edge XAS spectra with sub-second time resolution. An original XAS-based dynamical temperature calibration procedure was developed and used to monitor the sample and diamond temperatures during the application of constant power cycles, indicating that heating and cooling rates in the 100 K/s range can be easily achieved using this device
    corecore