1,824 research outputs found

    Learning to Extract Motion from Videos in Convolutional Neural Networks

    Full text link
    This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, \eg for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image contrast, phase and texture. We constrain weights within the network to enforce strict rotation invariance and substantially reduce the number of parameters to learn. We demonstrate end-to-end training on only 8 sequences of the Middlebury dataset, orders of magnitude less than competing CNN-based motion estimation methods, and obtain comparable performance to classical methods on the Middlebury benchmark. Importantly, our method outputs a distributed representation of motion that allows representing multiple, transparent motions, and dynamic textures. Our contributions on network design and rotation invariance offer insights nonspecific to motion estimation

    The low-temperature energy calibration system for the CUORE bolometer array

    Full text link
    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into a unique cryostat, this requires careful design and unconventional solutions. We present the design, challenges, and expected performance of this low-temperature energy calibration system.Comment: To be published in the proceedings of the 13th International Workshop on Low Temperature Detectors (LTD), Stanford, CA, July 20-24, 200

    UV Degradation of the Optical Properties of Acrylic for Neutrino and Dark Matter Experiments

    Full text link
    UV-transmitting (UVT) acrylic is a commonly used light-propagating material in neutrino and dark matter detectors as it has low intrinsic radioactivity and exhibits low absorption in the detectors' light producing regions, from 350 nm to 500 nm. Degradation of optical transmittance in this region lowers light yields in the detector, which can affect energy reconstruction, resolution, and experimental sensitivities. We examine transmittance loss as a result of short- and long-term UV exposure for a variety of UVT acrylic samples from a number of acrylic manufacturers. Significant degradation peaking at 343 nm was observed in some UVT acrylics with as little as three hours of direct sunlight, while others exhibited softer degradation peaking at 310 nm over many days of exposure to sunlight. Based on their measured degradation results, safe time limits for indoor and outdoor UV exposure of UVT acrylic are formulated.Comment: 13 pages, 6 figures, 3 tables; To be submitted to Journal of Instrumentatio

    Status of Neutrino Masses and Mixing and Future Perspectives

    Get PDF
    Status of the problem of neutrino masses, mixing and oscillations is discussed. Future perspectives are briefly considered.Comment: Report at the conference IRGAC 2006, Barcelona July 11-15 200

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl

    Dimerization structures on the metallic and semiconducting fullerene tubules with half-filled electrons

    Full text link
    Possible dimerization patterns and electronic structures in fullerene tubules as the one-dimensional pi-conjugated systems are studied with the extended Su-Schrieffer-Heeger model. We assume various lattice geometries, including helical and nonhelical tubules. The model is solved for the half-filling case of π\pi-electrons. (1) When the undimerized systems do not have a gap, the Kekule structures prone to occur. The energy gap is of the order of the room temperatures at most and metallic properties would be expected. (2) If the undimerized systems have a large gap (about 1eV), the most stable structures are the chain-like distortions where the direction of the arranged trans-polyacetylene chains is along almost the tubular axis. The electronic structures are ofsemiconductors due to the large gap.Comment: submitted to Phys. Rev. B, pages 15, figures 1

    Milionella subrotunda (Montague 1803), a miliolid foraminifer building large agglutinated tubes for a temporary epibenthic livestyle.

    Get PDF
    Live observations, cytological characteristics and biometrical measurements on Miliolinella subrotunda (Montagu, 1803) sampled from the northern and southern Atlantic Ocean are presented.M. subrotunda facultatively constructs a long, detritic tube lifting the test several millimeters above the sediment surface. A thickened conical base anchors the construction on the sediment surface and a long, flexible tube protrudes into the velocity profile of the bottom currents. The miliolid test is placed on top, surrounded by the uppermost part of the tube. This construction allows the organisms to feed in the particle stream above the sediment surface. In comparison to species living in and on the surface sediments,M. subrotunda apparently shows higher nutritional values in food ingested and larger amounts of reserve substances. Characteristics of the shape and structure that reduce drag on the tubes include a broadened conical base, a flexible tube, and a rounded top. From biometrical measurements it is concluded, that the tubes are constructed over a short period of their ontogeny
    corecore