132 research outputs found

    Diverse basis of β-catenin activation in human hepatocellular carcinoma: Implications in biology and prognosis

    Get PDF
    Aim: β-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ϵ (CK1ϵ) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC. Methods: Gene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues. Results: Sixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001). Conclusion: This study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism

    Mucin-hypersecreting bile duct neoplasm characterized by clinicopathological resemblance to intraductal papillary mucinous neoplasm (IPMN) of the pancreas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although intraductal papillary mucinous neoplasm (IPMN) of the pancreas is acceptable as a distinct disease entity, the concept of mucin-secreting biliary tumors has not been fully established.</p> <p>Case presentation</p> <p>We describe herein a case of mucin secreting biliary neoplasm. Imaging revealed a cystic lesion 2 cm in diameter at the left lateral segment of the liver. Duodenal endoscopy revealed mucin secretion through an enlarged papilla of Vater. On the cholangiogram, the cystic lesion communicated with bile duct, and large filling defects caused by mucin were observed in the dilated common bile duct. This lesion was diagnosed as a mucin-secreting bile duct tumor. Left and caudate lobectomy of the liver with extrahepatic bile duct resection and reconstruction was performed according to the possibility of the tumor's malignant behavior. Histological examination of the specimen revealed biliary cystic wall was covered by micropapillary neoplastic epithelium with mucin secretion lacking stromal invasion nor ovarian-like stroma. The patient has remained well with no evidence of recurrence for 38 months since her operation.</p> <p>Conclusion</p> <p>It is only recently that the term "intraductal papillary mucinous neoplasm (IPMN)," which is accepted as a distinct disease entity of the pancreas, has begun to be used for mucin-secreting bile duct tumor. This case also seemed to be intraductal papillary neoplasm with prominent cystic dilatation of the bile duct.</p

    Bovine liver slices combined with an androgen transcriptional activation assay: an in-vitro model to study the metabolism and bioactivity of steroids

    Get PDF
    Previously we described the properties of a rapid and robust yeast androgen bioassay for detection of androgenic anabolic compounds, validated it, and showed its added value for several practical applications. However, biotransformation of potent steroids into inactive metabolites, or vice versa, is not included in this screening assay. Within this context, animal-friendly in-vitro cellular systems resembling species-specific metabolism can be of value. We therefore investigated the metabolic capacity of precision-cut slices of bovine liver using 17β-testosterone (T) as a model compound, because this is an established standard compound for assessing the metabolic capacity of such cellular systems. However, this is the first time that slice metabolism has been combined with bioactivity measurements. Moreover, this study also involves bioactivation of inactive prohormones, for example dehydroepiandrosterone (DHEA) and esters of T, and although medium extracts are normally analyzed by HPLC, here the metabolites formed were identified with more certainty by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC–TOFMS) with accurate mass measurement. Metabolism of T resulted mainly in the formation of the less potent phase I metabolites 4-androstene-3,17-dione (4-AD), the hydroxy-T metabolites 6α, 6β, 15β, and 16α-OH-T, and the phase II metabolite T-glucuronide. As a consequence the overall androgenic activity, as determined by the yeast androgen bioassay, decreased. In order to address the usefulness of bovine liver slices for activation of inactive steroids, liver slices were exposed to DHEA and two esters of T. This resulted in an increase of androgenic activity, because of the formation of 4-AD and T

    A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres

    Get PDF
    Background: Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the cause of one of barley’s most important diseases, net form of net blotch. Here we report the first genome assembly for this species based solely on short Solexa sequencing reads of isolate 0-1. The assembly was validated by comparison to BAC sequences, ESTs, orthologous genes and by PCR, and complemented by cytogenetic karyotyping and the first genome-wide genetic map for P. teres f. teres. Results: The total assembly was 41.95 Mbp and contains 11,799 gene models of 50 amino acids or more. Comparison against two sequenced BACs showed that complex regions with a high GC content assembled effectively. Electrophoretic karyotyping showed distinct chromosomal polymorphisms between isolates 0-1 and 15A, and cytological karyotyping confirmed the presence of at least nine chromosomes. The genetic map spans 2477.7 cM and is composed of 243 markers in 25 linkage groups, and incorporates SSR markers developed from the assembly. Among predicted genes, non-ribosomal peptide synthetases and efflux pumps in particular appear to have undergone a P. teres f. teres-specific expansion of non-orthologous gene families. Conclusions: This study demonstrates that paired-end Solexa sequencing can successfully capture coding regions of a filamentous fungal genome. The assembly contains a plethora of predicted genes that have been implicated in a necrotrophic lifestyle and pathogenicity and presents a significant resource for examining the bases for P. teres f. teres pathogenicity

    Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis

    Get PDF
    Inflammation is a necessary albeit insufficient component of tumorigenesis in some cancers. Infectious agents directly implicated in tumorigenesis have been shown to induce inflammation. This process involves both the innate and adaptive components of the immune system which contribute to tumor angiogenesis, tumor tolerance and metastatic properties of neoplasms. Recently, heat-shock proteins have been identified as mediators of this inflammatory process and thus may provide a link between infection-mediated inflammation and subsequent cancer development. In this review, the role of heat-shock proteins in infection-induced inflammation and carcinogenesis will be discussed

    Risk factors, complications and survival after upper abdominal surgery:a prospective cohort study

    Get PDF
    Background: Preoperative weight loss and abnormal serum-albumin have traditionally been associated with reduced survival. More recently, a correlation between postoperative complications and reduced long-term survival has been reported and the significance of the relative proportion of skeletal muscle, visceral and subcutaneous adipose tissue has been examined with conflicting results. We investigated how preoperative body composition and major non-fatal complications related to overall survival and compared this to established predictors in a large cohort undergoing upper abdominal surgery. Methods: From 2001 to 2006, 447 patients were included in a Norwegian multicenter randomized controlled trial in major upper abdominal surgery. Patients were now, six years later, analyzed as a single prospective cohort and overall survival was retrieved from the National Population Registry. Body composition indices were calculated from CT images taken within three months preoperatively. Results: Preoperative serum-albumin 5 % (HR = 1.38, p = 0.023) were independently associated with reduced survival. There was no association between any of the preoperative body composition indices and reduced survival. Major postoperative complications were independently associated with reduced survival but only as long as patients who died within 90 days were included in the analysis. Conclusions: Our study has confirmed the robust significance of the traditional indicators, preoperative serum-albumin and weight loss. The body composition indices did not prove beneficial as global indicators of poor prognosis in upper abdominal surgery. We found no association between non-fatal postoperative complications and long-term survival
    corecore