604 research outputs found
Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region
We have performed a systematic study of several regions in the sky where the
number of galaxies exhibiting star formation (SF) activity is greater than
average. We used Kiso ultraviolet-excess galaxies (KUGs) as our SF-enhanced
sample. By statistically comparing the KUG and non-KUG distributions, we
discovered four KUG-rich regions with a size of . One of these regions corresponds spatially to a filament of length
Mpc in the Lynx-Ursa Major region (). We call this ``the Lynx-Ursa
Major (LUM) filament''. We obtained surface photometry of 11 of
the KUGs in the LUM filament and used these to investigate the integrated
colors, distribution of SF regions, morphologies, and local environments. We
found that these KUGs consist of distorted spiral galaxies and compact galaxies
with blue colors. Their star formation occurs in the entire disk, and is not
confined to just the central regions. The colors of the SF regions imply that
active star formation in the spiral galaxies occurred yr ago,
while that of the compact objects occurred yr ago. Though the
photometric characteristics of these KUGs are similar to those of interacting
galaxies or mergers, most of these KUGs do not show direct evidence of merger
processes.Comment: 39 pages LaTeX, using aasms4.sty, 20 figures, ApJS accepted. The
Title of the previous one was truncated by the author's mistake, and is
corrected. Main body of the paper is unchange
meson production in Au collisions at GeV
The PHENIX experiment has measured meson production in Au
collisions at GeV using the dimuon and dielectron decay
channels. The meson is measured in the forward (backward) -going
(Au-going) direction, () in the transverse-momentum
() range from 1--7 GeV/, and at midrapidity in the
range below 7 GeV/. The meson invariant yields and
nuclear-modification factors as a function of , rapidity, and centrality
are reported. An enhancement of meson production is observed in the
Au-going direction, while suppression is seen in the -going direction, and
no modification is observed at midrapidity relative to the yield in
collisions scaled by the number of binary collisions. Similar behavior was
previously observed for inclusive charged hadrons and open heavy flavor
indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version
accepted for publication in Phys. Rev. C. Data tables for the points plotted
in the figures are given in the paper itsel
L\'evy-stable two-pion Bose-Einstein correlations in GeV AuAu collisions
We present a detailed measurement of charged two-pion correlation functions
in 0%-30% centrality GeV AuAu collisions by the
PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well
described by Bose-Einstein correlation functions stemming from L\'evy-stable
source distributions. Using a fine transverse momentum binning, we extract the
correlation strength parameter , the L\'evy index of stability
and the L\'evy length scale parameter as a function of average
transverse mass of the pair . We find that the positively and the
negatively charged pion pairs yield consistent results, and their correlation
functions are represented, within uncertainties, by the same L\'evy-stable
source functions. The measurements indicate a decrease of the
strength of the correlations at low . The L\'evy length scale parameter
decreases with increasing , following a hydrodynamically
predicted type of scaling behavior. The values of the L\'evy index of stability
are found to be significantly lower than the Gaussian case of
, but also significantly larger than the conjectured value that may
characterize the critical point of a second-order quark-hadron phase
transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version
accepted for publication in Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central Au Collisions at =200 GeV
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC)
reports measurements of azimuthal dihadron correlations near midrapidity in
Au collisions at =200 GeV. These measurements
complement recent analyses by experiments at the Large Hadron Collider (LHC)
involving central Pb collisions at =5.02 TeV, which
have indicated strong anisotropic long-range correlations in angular
distributions of hadron pairs. The origin of these anisotropies is currently
unknown. Various competing explanations include parton saturation and
hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies
in Au collisions compared to those seen in Pb collisions at the
LHC. The larger extracted values in Au collisions at RHIC are
consistent with expectations from hydrodynamic calculations owing to the larger
expected initial-state eccentricity compared with that from Pb
collisions. When both are divided by an estimate of the initial-state
eccentricity the scaled anisotropies follow a common trend with multiplicity
that may extend to heavy ion data at RHIC and the LHC, where the anisotropies
are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has
minor changes to text and figures in response to PRL referee suggestions.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV
The PHENIX experiment presents results from the RHIC 2006 run with polarized
proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at
mid-rapidity. Unpolarized cross section results are measured for transverse
momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum
chromodynamics calculations are compared with the data, and while the
calculations are consistent with the measurements, next-to-leading logarithmic
corrections improve the agreement. Double helicity asymmetries A_LL are
presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the
gluon (x_g) with better statistical precision than our previous measurements at
sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in
the proton for 0.06 < x_g < 0.4.Comment: 387 authors from 63 institutions, 10 pages, 6 figures, 1 table.
Submitted to Physical Review D. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Single electron yields from semileptonic charm and bottom hadron decays in AuAu collisions at GeV
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured
open heavy-flavor production in minimum bias AuAu collisions at
GeV via the yields of electrons from semileptonic decays
of charm and bottom hadrons. Previous heavy-flavor electron measurements
indicated substantial modification in the momentum distribution of the parent
heavy quarks due to the quark-gluon plasma created in these collisions. For the
first time, using the PHENIX silicon vertex detector to measure precision
displaced tracking, the relative contributions from charm and bottom hadrons to
these electrons as a function of transverse momentum are measured in AuAu
collisions. We compare the fraction of electrons from bottom hadrons to
previously published results extracted from electron-hadron correlations in
collisions at GeV and find the fractions to be
similar within the large uncertainties on both measurements for
GeV/. We use the bottom electron fractions in AuAu and along
with the previously measured heavy flavor electron to calculate the
for electrons from charm and bottom hadron decays separately. We find
that electrons from bottom hadron decays are less suppressed than those from
charm for the region GeV/.Comment: 432 authors, 33 pages, 23 figures, 2 tables, 2011 data. v2 is version
accepted for publication by Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Transverse-energy distributions at midrapidity in , Au, and AuAu collisions at --200~GeV and implications for particle-production models
Measurements of the midrapidity transverse energy distribution, d\Et/d\eta,
are presented for , Au, and AuAu collisions at
GeV and additionally for AuAu collisions at
and 130 GeV. The d\Et/d\eta distributions are first
compared with the number of nucleon participants , number of
binary collisions , and number of constituent-quark participants
calculated from a Glauber model based on the nuclear geometry. For
AuAu, \mean{d\Et/d\eta}/N_{\rm part} increases with , while
\mean{d\Et/d\eta}/N_{qp} is approximately constant for all three energies.
This indicates that the two component ansatz, , which has been used to represent
distributions, is simply a proxy for , and that the term
does not represent a hard-scattering component in distributions. The
distributions of AuAu and Au are then calculated from
the measured distribution using two models that both reproduce
the AuAu data. However, while the number-of-constituent-quark-participant
model agrees well with the Au data, the additive-quark model does not.Comment: 391 authors, 24 pages, 19 figures, and 15 Tables. Submitted to Phys.
Rev. C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/papers.htm
Azimuthally anisotropic emission of low-momentum direct photons in AuAu collisions at GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd
and 3rd order Fourier coefficients of the azimuthal distributions of direct
photons emitted at midrapidity in AuAu collisions at
GeV for various collision centralities. Combining two different analysis
techniques, results were obtained in the transverse momentum range of
GeV/. At low the second-order coefficients, , are
similar to the ones observed in hadrons. Third order coefficients, , are
nonzero and almost independent of centrality. These new results on and
, combined with previously published results on yields, are compared to
model calculations that provide yields and asymmetries in the same framework.
Those models are challenged to explain simultaneously the observed large yield
and large azimuthal anisotropies.Comment: 552 authors, 15 pages, 9 figures, 3 tables, 2007 and 2010 data. v2 is
version accepted for publication by Phys. Rev. C. Plain text data tables for
the points plotted in figures for this and previous PHENIX publications are
(or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
