28 research outputs found

    The fusion approach – applications for understanding local government and European integration

    Get PDF
    The article explores the theoretical capabilities of the fusion approach as a conceptual ‘kit’ to explain the ‘bigger picture’ of European integration from a local government perspective. Fusion addresses the rationales and methods facilitating the transfer of policy-making competences to the European level. It understands European integration as a merging of public resources and policy instruments from multiple levels of government, whereby accountability and responsibilities for policy outcomes become blurred. The article argues that the fusion approach is useful to explain the systemic linkages between macro-trajectories and the corresponding change at the local level; the fusion dynamics of the local and European levels in a common policy-cycle; and the attitudes of local actors towards the EU. Although the article concludes that local government is rather modestly ‘fused’ into the EU, fusion approaches allow examining the extent to which the local level has become integrated into the European governance system

    Responses of plant cells and tissues to pulsed electric field treatments

    No full text
    Cell membrane electroporation/permeabilization may be achieved without affecting cell viability through strict control of the electric pulse parameters. This process is referred to as reversible permeabilization. Even if the cells survive the electric field treatment, they are subjected to stress due to the opening of pores and the struggle of the cells to recover their normal functionality. Very little is known about what actually occurs in the cell and its membranes at the molecular level upon reversible electroporation, and the physiological responses to pulsed electric field (PEF)-induced stress are still largely unknown. This chapter explores the current state of the art on the influence of the complexity of plant tissues on electroporation. Focusing on reversible electroporation, metabolic responses of plant cells and tissues induced by PEF application are also reviewed. One of the first challenges when electroporating plant tissue is their heterogeneous structures where cells vary in shape, size, and cell wall structure. This heterogeneity influences the effect of different electric fields protocols aiming at permeabilizing all cells in the tissue. Once cells are reversibly permeabilized, physiological responses to PEF-induced stress include the production of reactive oxygen species, mobilization of stored energy, activation of stress-related genes, and the production of secondary metabolites. The application of reversible PEF has also been shown to barley seed germination as well as to increase the strength of the cell wall in potatoes and, in consequence, their textural properties. This chapter finishes by revising the effect of reversible PEF on protoplasts (plant cells where the cell walls have been removed) and, in consequence, on the regeneration of new plants. Overall, reports on reversible permeabilization of plant cells and tissues are not common in the literature; however, they have laid the foundation for a fascinating area of research and technological innovation
    corecore