4,306 research outputs found

    Residual thermal and moisture influences on the strain energy release rate analysis of edge delamination

    Get PDF
    A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions

    MP 2009-09

    Get PDF
    As the price of traditional fossil fuels escalates, there is increasing interest in using renewable resources, such as biomass, to meet our energy needs. Biomass resources are of particular interest to communities in interior Alaska, where they are abundant (Fresco, 2006). Biomass has the potential to partially replace heating oil, in addition to being a possible source for electric power generation (Crimp and Adamian, 2000; Nicholls and Crimp, 2002; Fresco, 2006). The communities of Tanana and Dot Lake have already installed small Garn boilers to provide space heating for homes and businesses (Alaska Energy Authority, 2009). A village-sized combined heat and power (CHP) demonstration project has been proposed in North Pole. In addition, several Fairbanks area organizations are interested in using biomass as a fuel source. For example, the Fairbanks North Star Borough is interested in using biomass to supplement coal in a proposed coal-to-liquids project, the Cold Climate Housing Research Center is planning to test a small biomass fired CHP unit, and the University of Alaska is planning an upgrade to its existing coal-fired power plant that could permit co-firing with biomass fuels. The challenge for all of these projects is in ensuring that biomass can be harvested on both an economically and ecologically sustainable basis

    Space transportation systems, launch systems, and propulsion for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years

    A web-based and mobile health social support intervention to promote adherence to inhaled asthma medications: randomized controlled trial

    Get PDF
    Background: Online communities hold great potential as interventions for health, particularly for the management of chronic illness. The social support that online communities can provide has been associated with positive treatment outcomes, including medication adherence. There are few studies that have attempted to assess whether membership of an online community improves health outcomes using rigorous designs. Objective: Our objective was to conduct a rigorous proof-of-concept randomized controlled trial of an online community intervention for improving adherence to asthma medicine. Methods: This 9-week intervention included a sample of asthmatic adults from the United Kingdom who were prescribed an inhaled corticosteroid preventer. Participants were recruited via email and randomized to either an “online community” or “no online community” (diary) condition. After each instance of preventer use, participants (N=216) were required to report the number of doses of medication taken in a short post. Those randomized to the online community condition (n=99) could read the posts of other community members, reply, and create their own posts. Participants randomized to the no online community condition (n=117) also posted their medication use, but could not read others’ posts. The main outcome measures were self-reported medication adherence at baseline and follow-up (9 weeks postbaseline) and an objective measure of adherence to the intervention (visits to site). Results: In all, 103 participants completed the study (intervention: 37.8%, 39/99; control: 62.2%, 64/117). MANCOVA of self-reported adherence to asthma preventer medicine at follow-up was not significantly different between conditions in either intention-to-treat (P=.92) or per-protocol (P=.68) analysis. Site use was generally higher in the control compared to intervention conditions. Conclusions: Joining an online community did not improve adherence to preventer medication for asthma patients. Without the encouragement of greater community support or more components to sustain engagement over time, the current findings do not support the use of an online community to improve adherence

    Prediction of extreme events in the OFC model on a small world network

    Full text link
    We investigate the predictability of extreme events in a dissipative Olami-Feder-Christensen model on a small world topology. Due to the mechanism of self-organized criticality, it is impossible to predict the magnitude of the next event knowing previous ones, if the system has an infinite size. However, by exploiting the finite size effects, we show that probabilistic predictions of the occurrence of extreme events in the next time step are possible in a finite system. In particular, the finiteness of the system unavoidably leads to repulsive temporal correlations of extreme events. The predictability of those is higher for larger magnitudes and for larger complex network sizes. Finally, we show that our prediction analysis is also robust by remarkably reducing the accessible number of events used to construct the optimal predictor.Comment: 5 pages, 4 figure

    Spectral engineering of optical fiber preforms through active nanoparticle doping

    Get PDF
    Europium doped alkaline earth fluoride [Eu:AEF(2) (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, tau, of the Eu3+ emission that follows the cationic mass; tau(Ca) \u3c tau(Sr) \u3c tau(Ba) with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise standard materials, e.g., vapor-derived silica, in next generation optical fibers
    corecore