273 research outputs found

    Phase-dependent spectra in a driven two-level atom

    Full text link
    We propose a method to observe phase-dependent spectra in resonance fluorescence, employing a two-level atom driven by a strong coherent field and a weak, amplitude-fluctuating field. The spectra are similar to those which occur in a squeezed vacuum, but avoid the problem of achieving squeezing over a 4π4\pi solid angle. The system shows other interesting features, such as pronounced gain without population inversion.Comment: 4 pages and 4 figures. Submitted to Phys. Rev. Let

    Narrowband frequency tunable light source of continuous quadrature entanglement

    Full text link
    We report the observation of non-classical quantum correlations of continuous light variables from a novel type of source. It is a frequency non-degenerate optical parametric oscillator below threshold, where signal and idler fields are separated by 740MHz corresponding to two free spectrum ranges of the parametric oscillator cavity. The degree of entanglement observed, - 3.8 dB, is the highest to-date for a narrowband tunable source suitable for atomic quantum memory and other applications in atomic physics. Finally we use the latter to visualize the Einstein-Podolsky-Rosen paradox.Comment: 11 pages, 9 figures, LaTe

    Detection of turning freeze in Parkinson's disease based on S-transform decomposition of EEG signals

    Full text link
    © 2017 IEEE. Freezing of Gait (FOG) is a highly debilitating and poorly understood symptom of Parkinson's disease (PD), causing severe immobility and decreased quality of life. Turning Freezing (TF) is known as the most common sub-type of FOG, also causing the highest rate of falls in PD patients. During a TF, the feet of PD patients appear to become stuck whilst making a turn. This paper presents an electroencephalography (EEG) based classification method for detecting turning freezing episodes in six PD patients during Timed Up and Go Task experiments. Since EEG signals have a time-variant nature, time-frequency Stockwell Transform (S-Transform) techniques were used for feature extraction. The EEG sources were separated by means of independent component analysis using entropy bound minimization (ICA-EBM). The distinctive frequency-based features of selected independent components of EEG were extracted and classified using Bayesian Neural Networks. The classification demonstrated a high sensitivity of 84.2%, a specificity of 88.0% and an accuracy of 86.2% for detecting TF. These promising results pave the way for the development of a real-time device for detecting different sub-types of FOG during ambulation

    Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease

    Get PDF
    Impairments in motor automaticity cause patients with Parkinson's disease to rely on attentional resources during gait, resulting in greater motor variability and a higher risk of falls. Although dopaminergic circuitry is known to play an important role in motor automaticity, little evidence exists on the neural mechanisms underlying the breakdown of locomotor automaticity in Parkinson's disease. This impedes clinical management and is in great part due to mobility restrictions that accompany the neuroimaging of gait. This study therefore utilized a virtual reality gait paradigm in conjunction with functional MRI to investigate the role of dopaminergic medication on lower limb motor automaticity in 23 patients with Parkinson's disease that were measured both on and off dopaminergic medication. Participants either operated foot pedals to navigate a corridor (‘walk’ condition) or watched the screen while a researcher operated the paradigm from outside the scanner (‘watch’ condition), a setting that controlled for the non-motor aspects of the task. Step time variability during walk was used as a surrogate measure for motor automaticity (where higher variability equates to reduced automaticity), and patients demonstrated a predicted increase in step time variability during the dopaminergic “off” state. During the “off” state, subjects showed an increased blood oxygen level-dependent response in the bilateral orbitofrontal cortices (walk>watch). To estimate step time variability, a parametric modulator was designed that allowed for the examination of brain regions associated with periods of decreased automaticity. This analysis showed that patients on dopaminergic medication recruited the cerebellum during periods of increasing variability, whereas patients off medication instead relied upon cortical regions implicated in cognitive control. Finally, a task-based functional connectivity analysis was conducted to examine the manner in which dopamine modulates large-scale network interactions during gait. A main effect of medication was found for functional connectivity within an attentional motor network and a significant condition by medication interaction for functional connectivity was found within the striatum. Furthermore, functional connectivity within the striatum correlated strongly with increasing step time variability during walk in the off state (r=0.616, p=0.002), but not in the on state (r=−0.233, p=0.284). Post-hoc analyses revealed that functional connectivity in the dopamine depleted state within an orbitofrontal-striatal limbic circuit was correlated with worse step time variability (r=0.653,

    Analytical solution for the Mollow and Autler-Townes probe absorption spectra of a three-level atom in a squeezed vacuum

    Get PDF
    The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum

    Nonlinear dynamics of a spinning shaft with non-constant rotating speed

    Get PDF
    Research on spinning shafts is mostly restricted to cases of constant rotating speed without examining the dynamics during their spin-up or spin-down operation. In this article, initially the equations of motion for a spinning shaft with non-constant speed are derived, then the system is discretised, and finally a nonlinear dynamic analysis is performed using multiple scales perturbation method. The system in first-order approximation takes the form of two coupled sets of paired equations. The first pair describes the torsional and the rigid body rotation, whilst the second consists of the equations describing the two lateral bending motions. Notably, equations of the lateral bending motions of first-order approximation coincide with the system in case of constant rotating speed, and considering the amplitude modulation equations, as it is shown, there are detuning frequencies from the Campbell diagram. The nonlinear normal modes of the system have been determined analytically up to the second-order approximation. The comparison of the analytical solutions with direct numerical simulations shows good agreement up to the validity of the performed analysis. Finally, it is shown that the Campbell diagram in the case of spin-up or spin-down operation cannot describe the critical situations of the shaft. This work paves the way, for new safe operational ‘modes’ of rotating structures bypassing critical situations, and also it is essential to identify the validity of the tools for defining critical situations in rotating structures with non-constant rotating speeds, which can be applied not only in spinning shafts but in all rotating structures

    Phylogenomic Analysis of Odyssella thessalonicensis Fortifies the Common Origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana Mitochondrion

    Get PDF
    Background: The evolution of the Alphaproteobacteria and origin of the mitochondria are topics of considerable debate. Most studies have placed the mitochondria ancestor within the Rickettsiales order. Ten years ago, the bacterium Odyssella thessalonicensis was isolated from Acanthamoeba spp., and the 16S rDNA phylogeny placed it within the Rickettsiales. Recently, the whole genome of O. thessalonicensis has been sequenced, and 16S rDNA phylogeny and more robust and accurate phylogenomic analyses have been performed with 65 highly conserved proteins. Methodology/Principal Findings: The results suggested that the O. thessalonicensis emerged between the Rickettsiales and other Alphaproteobacteria. The mitochondrial proteins of the Reclinomonas americana have been used to locate the phylogenetic position of the mitochondrion ancestor within the Alphaproteobacteria tree. Using the K tree score method, nine mitochondrion-encoded proteins, whose phylogenies were congruent with the Alphaproteobacteria phylogenomic tree, have been selected and concatenated for Bayesian and Maximum Likelihood phylogenies. The Reclinomonas americana mitochondrion is a sister taxon to the free-living bacteria Candidatus Pelagibacter ubique, and together, they form a clade that is deeply rooted in the Rickettsiales clade. Conclusions/Significance: The Reclinomonas americana mitochondrion phylogenomic study confirmed that mitochondri

    Effectiveness of an online group course for adolescents and young adults with depressive symptoms: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression is a common condition whose first onset is usually in late adolescence or early adulthood. Internet-based interventions are an effective treatment approach to depression. The aim of this study is to investigate the effectiveness of a Dutch online cognitive-behavioural group course known as Master Your Mood (<it>Grip op Je Dip</it>) for young people reporting depressive symptoms. Secondary research questions involve maintenance of effect at 6 months, mediators, and predictors of better outcomes.</p> <p>Methods</p> <p>We will conduct a randomised controlled trial (RCT) in which 244 young people aged 16-25 are randomly allocated to the Grip op Je Dip (GOJD) online group course or to a waiting list control group. The participants will be recruited from the general population. The primary outcome measure will be the severity of depressive symptoms according to the Center for Epidemiological Studies Depression Scale (CES-D). Other outcomes will include anxiety (Hospital Anxiety and Depression Scale-Anxiety, HADS) and mastery (Mastery Scale). Assessments will take place in both groups at baseline and three months later. Effect maintenance will be studied in the GOJD group six months after baseline, with missing data imputed using the expectation-maximisation method. Mediators and predictors of better outcomes will also be identified.</p> <p>Discussion</p> <p>The trial should add to the body of knowledge on the effectiveness of Internet-based interventions for depression. To our knowledge, this will be the first RCT on an online group intervention in this field.</p> <p>Trial registration</p> <p><a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=NTR1694">NTR1694</a></p
    corecore