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Analytical solution for the Mollow and Autler-Townes probe absorption spectra
of a three-level atom in a squeezed vacuum
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(Received 25 June 1997; revised manuscript received 16 December 1997

The Mollow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration
with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are
studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra
are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth.
The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the
spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing
field are degenerat®PA) or nondegenerattNDPA) parametric amplifiers. In a broadband or narrow band-
width squeezed vacuum generated by a NDPA, the central component of the Mollow spectrum can be signifi-
cantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central
feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the
squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be
narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are
always broadened in a broadband squeezed vaclBH050-294708)10404-3

PACS numbes): 42.50.Dv, 32.70.Jz

I. INTRODUCTION weak coupling conditions apply, a finite bandwidth of the
squeezed vacuum can decrease the potential of the line nar-
Since the first paper of Gardingt] on the interaction of rowing found in absorption and spontaneous emission spec-
a two-level atom with a squeezed vacuum, there has beentea [13-16. For coherently driven systems in a finite-
lot of research done on the spectroscopy with squeezed ligig@ndwidth  squeezed vacuum, however, the spectral
[2] At the same time, considerable progress has been madjéeW|dth can be narrower than-that ina bro_adbal’ld Squeezed
in the developing of sources of the squeezed-vacuum fielyacuum[17-19. The effects differ depending on whether
(mainly parametric amplifieys This progress has allowed to he squeezed field is maximally squeezed at a central fre-
test the novel predictions of the matter squeezed field interdUeNcy(@s in a degenerate parametric ampljfier at fre-
action [3-5]. In the spectroscopic applications of the quencies equally d|splach from a central frequeasyin a
squeezed-vacuum field two- and three-level atoms are th@onQegenerate pgrqmgtnc amplmeWork' has also been
favorite systems, often in free space but more reCentI)yarrled out for an intrinsically non-Markovian case where the

treated in cavities. The latter has been recognized as bei plueezing bandwidth is comparable or even small compared
' 9 d the decay rat¢20]. Numerical treatments of finite band-

most su@able for an obs_ervatlon Of. the squeezed—vgcuum EWidth squeezed-vacuum effects using both adjoint equations
fects as it does not require squeezing Qf all modes in the fu 19,14,21,20and stochastic density matrix methdds, 16
4m solid angle. Studies of modifications to spontaneous,aye heen carried out. Recently, an analytical dressed atom
emission, resonance fluorescence, probe absorption SpeCté%proacr[17,22—28 involving Markovian master equations
and photon statistics are included in the topics covered. [29] has been proposed. This approach provides a simple
Much of the work to date has considered broad bandwidthnderstanding of the finite squeezed-vacuum effects. How-
squeezed-vacuum fields, where the bandwidths are not onber, the approach is valid for squeezed vacuum bandwidths
large compared to the spontaneous emission linewidth, buhuch greater than the normal vacuum decay width in order
also larger than the Rabi frequencies and detunings of a drie satisfy the Markov approximation. Despite this, the ap-
ing field. A broad bandwidth approximation allows to de- proach allows to discuss the cases where the squeezed-
velop the theory in terms of a Markovian master equationvacuum field bandwidth is small compared to the Rabi fre-
using uncoupled atom-driving field states. Recent work inquencies and detunings of driving laser fie[dg,28.
volving the broadband squeezed vacuum case by Sstaih In a previous pap€r28] (to be referred to as),l we have
[6—9] has demonstrated some new, unusual features in theresented a method based on a master equation approach
resonance fluorescence and probe absorption spelffra  using dressed atom states to calculate the Mollow and
12], so there is still an interest in studying the broadbandAutler-Townes probe absorption spectra of a three-level cas-
case. cade atom. In the calculations we assumed that one of the
However, the common squeezed-vacuum field sourceswo atomic transitions is strongly driven by a coherent laser
the parametric amplifier®2], generate a narrow rather than field and damped by a narrow bandwidth squeezed vacuum.
broadband field. Therefore, theoretical studies of atomicThe spectra were calculated numerically for a squeezed
spectroscopic behavior for finite bandwidth sources are ofacuum produced by a degenerate parametric amplifier
practical interest. For undriven atoms in free space, wheréDPA) and the carrier frequency of the squeezed-vacuum
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field equal to the driving laser field frequency. In the present b2— sz 1 1

paper, we present analytical solutions for the probe spectra N(w,)= y X 5 5 2],

and extend the theory to a nondegenerate parametric ampli- 4 l(wl_wa)z'i' bl (@~ wa)“+by

fier (NDPA) source of squeezed light. In order to get a better

insight into the role of different sources of the squeezed _ e bf,—bij 1 1

vacuum in the spectral narrowing, we derive analytical for-M(w)=—€'% 4 l(wl_wa)2+b2 + (@ — w,)2+ b2 '
x y

mulas for the bandwidths of spectral features for both the 2.3
DPA and NDPA cases and compare them with the broad-
band case. For simplicity, we restrict ourselves to the casand for the NDPA sourcf32,34
where the squeezed-vacuum center frequencies and the driv-
ing frequency coincide. N() bi— b)z(J 1 N 1

The paper is organized as follows. In Sec. I, we briefl W)= > 2 > 2
outline fheptheory,gwhich was derived in I, and extend it tg 4 l(w'_wa+ )"+ by (0= wa—a) "+ by

the case of a NDPA. In Sec. lll, we present analytical results 1 1
for the absorption spectra. Numerical results of the absorp- — — ,
tion spectra are presented in Sec. IV. In Sec. V, we compare (0= wat @)?+b) (0~ w,—a)?+ bi]
the analytical expressions for the widths of the spectral fea-
tures with the numerical results. We summarize the results in . bf,— bij 1
Sec. VI. M(w)=—e'?
4 l (0— wat a)?+ b)z(
Il. THEORETICAL FORMALISM N 1 1
We consider a three-level atom in a cascade configuration (0= wa—)®+b; (0~ wa+a)’+b]
with the upper leve|3), the intermediate leveR), and the
ground level|1) separated by the transition frequencies i 1 2.4
and w,,, respectively. We assume that the lower 1-2 transi- (01— wa— a)?+ b§ ' '
tion is driven by a strong laser field of the Rabi frequefiy
and frequencyw,, which is detuned from the transition by with
8= wy1— w,. In addition to the driving field, the lower tran-
sition is coupled to a squeezed-vacuum field of the plfase b _ Yo _ €
and the carrier frequencyg. The squeezed-vacuum field 2 ’
detuning &5 from the laser frequencys= w,— ws is set to
zero, however. The radiation properties of the system are b :EJFE 2.5
analyzed by calculating absorption spectra of a probe field of y 2 ' '

frequencyw,. The probe field is assumed weak and can be _
tuned to the lower transitionu(,~ w,y) to study the Mollow ~ The parametery, and e are the cavity decay rate and the
absorption spectruf80], or can be tuned to the upper tran- amplification constant of the parametric amplifier, respec-
sition (w,~wsy) to study the Autler-Townes absorption tively. The squeezed-vacuum spectrum of the DPA source
spectrum31]. has one peak centered@j, whereas the squeezed-vacuum
The narrow band squeezed-vacuum case will be treatespectrum of the NDPA source has two peaks centered, at
with Q>I'>T, and compared with the broadband case,and separated from the central frequency hyr. The
wherel's>Q,T'. I' is the squeezed vacuum bandwidth andsqueezing bandwidti’s can be taken equal td,, the
I', is the spontaneous decay rate for the 1-2 transition. Theémaller of the two linewidth factors. The peak heights for the
squeezed-vacuum field source is assumed to be either a DEAPA and NDPA curves have been made the same in order to
or NDPA, whose output is characterized by the followingcompare the results.

correlation functiong$32]: In our paper(l), we have derived a Markovian master
equation for the reduced atomic density operatofsee Eq.
<ala|>:N(w|) if we=w, (2.47 of I]. In terms of the semiclassical dressed states, the

master equation can be written as

=0 otherwise (2.1 dpa 1 L _
= RLAeal+ 2 Ty([Tipa T+ T paTiD),
and (2.6
(@) =M(w) if oo =20, where I';; are the dressed-atom relaxation rates based on
secular approximationsee Eqs(2.48 and(2.50 of 1],
=0 otherwise, (2.2

~ 1 _

, N T1=5 (122 - [1)(T)),
where N(w,) and M(w,) are squeezing parameters giving

the photon number and two photon correlation functions, re-
spectively. For the DPA source they are given[Bg,34]

—

2:T £:|§><I|:
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~ 1 . - - W= w,,
Ta=5 (22 +T,
wor= wa+Q', (214)
Ts=T 7=13)(1, 2.7
w3=w,— Q.
T6=Tg=|3>(2|, . . ) .
Using contour integral methods, we find the explicit form
= 3\ of the relaxation terms, which for the DPA are
To=[3)(3],
are the atomic operators given in terms of the semiclassical i T i bi_bi
dressed states (wi)= g° b,b,
|T)=cog 6)|1)+i sin(#)e i(@at*?a)|2), [ i(wa=wp)(by+hby,)+(bi+b3)]
_ | [(0a— i +ib)(wa—wi+iby)]
[2)=i sin(#)|1)+cog e '(wal*4a|2) (2.8
3)=e (@t ¢a)|3), In(wj) =[1+2N(w;)]T, (219
with whereN(w;) is given in Eq.(2.3). For the NDPA the relax-
ation terms are given by
-5+
tan(0) = —q— 29  _ To ., by~ bi[ i(wa— wi+a)+b, 1
M(wi):_?e T g 2. 12 b.
and l(wa—wi—ka) +b; Bx
0= [FTO2 (2.10 N (wa—wjta)tby 1  i(wa—wj—a)+b, 1

(wa—wi-i-a)z-l- b§ b_y (wa— wi—a)’+ b)z( b_x

In Eq. (2.6), H, is the dressed-atom Hamiltonian defined as

3
HA: Zl ﬁva|a><a|'

(2.1)
where
vi=(5—Q")/2,
V,=(8+0")12, (2.12
V3= (O32+ 5

i —wi—a)+b, 1
" (wa— 0j—a) y

(wa— 0= a)?+b] by["

(2.16

Ty(w)=[1+2N(w;)]To, (217
wherelj is the spontaneous emission rate of the 2-1 transi-
tion. The squeezing modified relaxation rafel{ ;) and
I'v(w;) can have different values depending on the fre-
quency w; about which they are evaluated. For the DPA
source and)’'>b,,b,, the squeezing vacuum appears only
around the central frequency and then the relaxation terms

are the detunings of the dressed-atom frequencies from th@duce to

driving laser frequencyw,. The sum in Eq.2.6) is over

i,j={1,2,3,5,6,7,8 and certain frequency shift terms have

been ignored.

_ 1 . - ~
M(wy)=— EI‘OMe'%, M(w,)=M(w3)=0,

Having available the master equation of the system, we

can derive the equations of motion for the expectation values
of the dressed-atom operatdgs7). The set of the equations

can be written in a matrix form as

daT

G =HT (2.13

whereT=((T1),(T>), ... (Ts)) is a column vector, and
is a 9x 9 matrix whose elementd;; are given in Eqs(3.8)

and (3.9 of I. As before, certain frequency shift terms

An(w;) are ignored. The matrix elemertts; depend on the

detuning 4, the Rabi frequencyl, and on relaxation terms

M (w;) andi(wi) [see Egs(3.3) and(3.6) of I] induced by

the squeezed vacuum and evaluated at the dressed-atom tran-

sition frequencies

Tn(01)=(1+2N)Ty, Ty(wy)=Ty(wg)=T,

(2.18

whereN andM =+/N(N+ 1) denote, respectively, the mag-
nitudes of the photon numbe¥(w;) and the two-photon

correlationsM (w;) evaluated at their peaks. For the NDPA
source witha=(}', the two peaks couple to the side fre-
guenciesw, andws and in this case the relaxation terms are

~ —~ — 1 .
M(@1)=0, M(w2)=M(ws)=—7ToMe'%,

Tn(w2)=Ty(w3)=(1+2N)Tg.
(2.19

fN(w1)=0,
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The set of Eqs(2.13 with the relaxation term&.18 and
(2.19 together with the quantum regression theorg3s]
allow us to calculate both the Mollow and Autler-Townes +DT (

. sI'n(w3),
probe absorption spectra.

H,=4D,D4[|M(w5)|+|M(ws)|]cos ¢+D§FN((’)2)

Ill. ANALYTICAL CALCULATION H,=D4|M(w;)|(D,€¢—Dse %)
OF THE ABSORPTION SPECTRA

1 ~
The atomic transitions, the lower driven by a laser field B ZDl(DZ_D3)FN(“’1)’

and coupled to a finite bandwidth squeezed vacuum and the
upper undriven transition, can be monitored by a weak probe

beam. For the probe beam coupled to the driven transition, H3=2D4[D3e'’|M(w3)|—Doe™'*|M(w,)]]
the Mollow absorption spectrum can be evaluated, whereas 1 _ _
for the probe coupled to the upper 2-3 transition the Autler- + §D1[D2FN(0)2)— DsI'n(w3)],

Townes spectrum can be studied. In the limit of a strong
driving field, Q>T,, approximate forms of the spectra can
be obtained. The probe frequenay, can be expressed in H,=2D2|M(w;)|cos ¢
terms of a small detuningo from any particular resonant
feature of interest. The Mollow probe absorption spectra +2D,D 5[ |M(wy)|+|M(w3)|]cos ¢
about any feature can be approximately found by application 1
of Taylor's series with respect to small quantities such as Tr_pn2T o 2F
SwlQ'. For the Autler-Townes probe absorption spectrum, 51~ Diln(@) +Daln(wz) + Dil(w3)],
the same approach can be applied to obtain the approximate 3.3
analytical results. We will consider the case whée w, ’
— wg IS Z€ero. . o
In our model only the lower transition of the three-level Hs=2D3%€e'?|M(w3)| +2D3e'*|M(w,)|
atom is driven by a laser field and coupled to a squeezed 1
vacuum. For simplicity, the upper level 3 is treated as a + = D,D4[ Tn(@,) + Tn(ws)],
spectator only, in that relaxation rates associated with the 2-3 2
transitions are ignored in comparison with those for the 1-2
transition. In this case we can separate the dynamics of the ﬁ’=Q’—2D2D3(|I\7(w2)|—||\7(w3)|)sin b,
lower transition from that of the upper transition. Therefore,
we can approximately treat the lower transition as an indiand ¢=2¢,+ ¢. The coefficientg3.3) are obtained from
vidual two-level system. In order to find the dynamics of thlsEq_ (3.9 of | after ignoring the shift parameterEN(wi),

system it is enough to determine the time evolution of th%hich are very small fo€)'>T'g,b, b, . The quantitieD,
. ~ 1 Mx My - i

one time averages of only three dressed opera{@iy,  are given in terms of the tipping angteas

(T,), and{T3). The equations of motion for these operators

are easily subtracted from E@.13), and for()’'>1"; can be D,=2i sin 6 cos ¥,

written in a matrix form as

D,=sirfé,
dTm—H T (3.
dt mome ' Dy=cos4, (3.9
whereT,,=(({T1),(T,),(T3)), and Ds=i sin 0,
_ *
H Ha H2 Dg=c0S 6.
—| Hs —H,+iQ H : : :
Hp 3 H,+iQ 5 32 Applying the quantum regression theor¢8%] to obtain
H3 HE —H4—i(~)’ the two time averages from E¢B.1) for the one time aver-
ages and using Laplace transform methods, we find that for
with QO'>T, the stationary Mollow spectrum can be written as

. 1 As(s)
S(wp,*)= 7R — — : 3.9
m (stH)(s+H4+iQ ) (s+H,—1Q")

S:—iéwp
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whereN;, is the normalization constant given in terms of the _ _ _
stationary valug ;) of the dressed operators as Be~i 6{2<T1>S(D§+ D3)—D1(Dy(T2)s+ D T3)s)}-

Now=27(T1)s(D3= Do)+ 7D1((Ta)s—(T2)o), (3.6 39

In the paramete., the approximation was taken to the

order of 1£)' since the first term, which is typically of zero

order in 1£)’, can be very small and then terms of the order

1/Q'" can dominate. In the paramet®g the first nonvanish-

~ o ing term is of order 10".

bands atdw,= *€)’. These minima correspond to the three T first term in the spectrui8.7) is the vertical shift of

features of the Mollow triplet. o the central feature. The second term corresponds to the
It is interesting to note that the Rabi sidebands of the grentzian absorption part of the spectra and the third to the

Mollow spectrum are located at{)’, which are shifted from Rayleigh dispersion part.

Q' by 2D,D4[|M(w,)|—|M(w3)|]sing [see Eq.(3.3)]. For the left feature abw,~—Q’', we can write dw,

The shift appears only for a narrow bandwidth squeezed™ @ —{)’, wheredw is a small detuning about the left fea-

bandwidth withgs= /2, andi (w,) # M (ws). Therefore, in  ture, and then the spectruf@.5) reduces to

andA,(s) is a second order polynomial ;1 The parameter
dw, is the probe detuning from the laser frequendwf

(6wp=w,— w,). We note from Eq(3.5 that the denomina-
tor has three minima, the central &i,=0, and two side-

order to observe the shift, the squeezing spectrum should be 1 _AH iALS
asymmetric aboudby. S(Sw,20)~ R LHa IA 0w (310
At the central feature we can writw,= dw, where dw N | 6w?+H2  Sw?+H?

is the probe detuning from the central frequenesy, and
then forQ)’>H, the Mollow probe absorption spectrum can where A, = D3(2D5(T1)s—D1(T,)s). The left-hand side

be approximately written as feature of the absorption spectrum is composed of the
Lorentzian and Rayleigh components, respectively.
1 — (Ag+B.H)H, Similarly, we can show that the right_feqture of the Mol-
SL(Sw, )~ —Rej B+ low probe absorption spectra at,~()’ is given by
N Sw’+H?
I w w,0 )~ — , .
o (3.7 R N | 6w+ H2  Sw+H?
Sw-+Hj

WhereAR: - D2(2D2<Tl>3_ D1<T3>S) and nOW5wp= 5(1)
+Q'.

The dynamics of the upper 2-3 transition are determined
by two dressed operatofs, and Tg. For Q'>T, the equa-
tions of motion for these operators can be easily subtracted

where

Ac~—D1(Dx(T2)s—Da(T3)s)

+i${_2H1<T1>S(DS+D§) from Eq.(2.13 and can be written as
Mo o1 3.1
—2(T)D1(D3H,+DzHE)+DH,(Dx(To)s dr et (312
+D5(T3)s) + DI(H(T2)st H3(T)o) whereT,={(T)(Te)}, and
+D2Da(Ha(To)s H3(Ta)o) — (D3H(Ta)s b o[ “Hemi(o+ QN2 Hy
s 2 Hg —Ho—i(6-Q")/2)"
+D5H3(T2)s)} 3.9 (3.13
and with

1 o = ib o |1 —ig 1 = 1 o=
H6=§D1IM(w1)|cos¢+D2D3[|M(w3)|e +|M*(w,)|e ]_§D1FN(0’1)+ZD2[FN(W2)
~ 1 ~ ~
—Lo(w2)]+ 7D T(wa) +Fo(ws)],
1 1 _ ~ ~ _
H7:_ZD1F0+ng{Dz[FN(wl)_FN(wz)]_Da[FN(wl)_FN(wa)]}

1 M M i 1 VE VE —i
—§D1D2[|M(a)l)|—|M(a)2)|]e¢+§D1D3[|M (1) —|M*(w3)|]e ’,
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1 1 ~ ~ ~ _
HBZZD1F0+ §D1{D2[FN(“)1)_FN((U2)]_ D[ I'n(wq) —T'n(w3) 1}

1 ~ —~ o1 ~ ~ .
— 5D1D2[[M* (w1)| = IM* (@;)[]e ™"+ 5D1D4[[M(w1)| = [M(w;)|Je'?, (3.14

1 o =~ i L |75 “ig 1 o=

H9:§D1|M(w1)|003¢+D2D3[|M(w2)|e +|M* (w3)|e ]_§D1FN(w1)
1, - 1, - -
+ZDz[FN(w2)+ro(ﬂ)2)]+ZDg[FN(ws)—Fo(wa)]-

Using the quantum regression theorem to obtain the two time averages frai® B for the one time averages and using
Laplace transform, we find that fai,=0 and()’'>T, the Autler-Townes spectrum can be written as

. 1 Aq(s)
SN wp,®)=-7R . - , (3.19
N [ [s+He+i(Q'+ 0)2][s+He—i(Q' = 8)/2)] _ ..,
P
|
where Nt is the normalization constant For the right feature the absorption spectra are centered at
frequencyws,+ (' + 6)/2 and similarly to the left feature is
1 ~ ~ ~ given by
Nar=| 5 +(D§+DN(To)s+ D5D6(<Tz>s—<Ts>s>},
3.1 1 HgReA
(3.1 sg(éw,oo)~/v—%, (3.20)
andA4(s) is a first order polynomial irs given by the nu- AT ow 6
merator of Eq.(2.83 of | times the determinant ofsE, where

(SE2-H(,,2)). In Eq. (3.19, dw), is the probe detuning
from the upper transition frequency of the atom given by

, 1 -~ ~ -
Swp=wp— w3, . Re{Ar}= D§(§_<Tl>) —DsDg((T2) —(T3))/2,

The spectrum is composed of two lines located-4()’ 39
—8)/12 and Q'+ 68)/2. Near the left feature we can write (322

Swp=—(Q' = 8)/2+ dw, where o is the detuning of the .\ o writterSow), = (Q' + 8)/2+ Sw, where S is
probe frequency from the center of the line. Thus at the Ief51ow the detuning from the center of the right feature.
feature, we can approximate E®.15 to

IV. NUMERICAL RESULTS FOR PROBE
1 HgAL AL50)
S(bw,»)~—R —i , ABSORPTION SPECTRA
Nat | 8w?+H2  Sw?+H?2 _ _ _ .
(3.17 Having available the analytical solutions for the Mollow
and Autler-Townes spectra, we can discuss the dependence
where of the spectra on the bandwidth of the squeezed field applied

to the system. With the central squeezing frequency equal to

- the laser frequency, there are three interesting cases to con-
+DsDe(T2)s- 3.18 sider: the broad bandwidth, DPA, and NDPA narrow band-
width. In order to compare the broadband and narrow band

In the Autler-Townes probe absorption spectra the LorentzCases, the strong field regini&>T'; is treated, and various
ian features dominate. Thus dropping the Rayleigh part ofhoices of the total phas¢ are used. The Mollow spectra

the spectrum and taking the real part4f we have are calculated using Eq2.82 of | and the Autler-Townes
spectra using Eq(2.83 of I. Exactly the same numerical

1 HoReA} results are also obtained using the analytical forms Egs.
Sﬁ(&w,oc)m e o (3.19 (3.7, (3.10, and(3.19 presented here.
Nat o +Hy All graphs used parametels=b, for normal vacuum,
{bx=10p,=15 for narrow bandwidth, andb,=600p,
where =900 for broad bandwidth squeezed-vacuum field. In all
cases the Rabi frequen€y=100. The Mollow absorption
=~ = spectrum for the DPA source of the squeezed vacuum is
+DsDs((T2)s=(Ta)9)/2. plotted in Fig. 1 for the case of a narrow bandwidth
(3.20 squeezed-vacuum field. It is seen that the bandwidth of the

2 1 =
AL=Dg| 5 —(Ta)s

1 -~
Re[A }= Dg(i - <Tl>s
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FIG. 1. Mollow probe absorption spectrug(in units ofl"gl) FIG. 2. Mollow probe absorption spectrug(in units ofl“gl)
for the case of DPA versus probe detunifig,, (in units ofI'g) in for the case of NDPA versus probe detunifig, (in units ofI'y) in
the case of resonancés= 0, and for a narrow bandwidth squeezed the case of resonancé=0, and for a narrow bandwidth squeezed
vacuumb, =10, by,=15. The Rabi frequenc{) =100. The central vacuumb,=10, b,=15. The Rabi frequenc{) = 100. The central
component of the absorption spectrum is showrain one of the  component of the absorption spectrum is showrajn one of the
Rabi sidebands irfb). The full line in the graphs represents the Rabi sidebands irtb). The full line in the graphs represents the
spectra in the absence of squeezed vacuum. Results for vasious spectra in the absence of squeezed vacuum. Results for vafious
are (i) ¢=0 (dashed ling (ii) ¢=m/2 (dotted ling, (iii) ¢=m are (i) ¢=0 (dashed ling (ii) ¢=m/2 (dotted ling, (iii) ¢=m
(dot-dashed ling In all casesws=w, . (dot-dashed ling In all casesws=w, anda=Q".

central componeritrig. 1(@] is independent of the phase The left feature of the Autler-Townes absorption spec-
and is the same as in the ordinary vacuum. The amplitude afum is shown in Fig. 4 for different types of the squeezed-
the feature depends on the phase and changes from absoygcuum field. For the DPA sour¢Big. 4(a)] of the squeezed
tionlike for ¢=0 and 7 to dispersionlike as the phase vacuum and$=0 the feature can be narrower than that in
changes togp= /2. The bandwidth of the Rabi sidebands the normal vacuum. For the NDP{&ig. 4(b)] the narrowing
[Fig. 1(b)], however, depends on the phageand for¢=0 is observed for¢=. In the broadband casgig. 4(c)],

the sidebands can be significantly narrowed compared to thaowever, the feature is always broadened independent of the

in the normal vacuum. phase¢. The same conclusion applies for the right feature.
In Fig. 2, we plot the Mollow spectrum for the NDPA

source of the narrow bandwidth squeezed-vacuum field. In

this case the central line is absorptive for all valuegpbut V. THE BANDWIDTHS OF THE SPECTRAL FEATURES

for ¢ =7 can be narrower than that in the normal vacuum.

The Rabi sidebands exhibit a weak dependence on the phase o

# and for = can be narrower than that in the normal . In order.to get a better insight into the effects of a squeez-

vacuum. The narrowing, however, is small. ing bandwidth on the spectra_\l features, we evaluate analyti-
Figure 3 shows the Mollow absorption spectrum for thecal formulas for the bar_1dW|dths of the spectral features.

broadband squeezed vacuum field. The central Jiig.  From Ed.(3.7), the bandwidtH'c at the central feature of the

3(a)] exhibits exactly the same dependence on the phase as iollow probe absorption spectrum is given b2

the NDPA casdsee Fig. 23)]. The Rabi sidebands are al-  For & narrow bandwidth DPA source of the squeezed

ways broadened independent of the phase field, the damping parameteh8(w;) andi(wi) are given

A. Mollow spectrum
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FIG. 3. Mollow probe absorption spectrug(in units ongl) 0.6
for the case of broad bandwidth squeezed vacubg=600, b, 0.5
=900) versus probe detuningv, (in units of I'g) in the case of ?
resonanced=0. The Rabi frequency) =100. The central compo- 0.4
nent of the absorption spectrum is shown(@), one of the Rabi 0.3 ©)
sidebands irib). The full line in the graphs represents the spectra in
the absence of squeezed vacuum. Results for varoase (i) ¢ 0.2
=0 (dashed ling (ii) ¢= /2 (dotted ling, (iii) ¢= = (dot-dashed X
line). In all casesws=w, . ’ 7/
-52 -51 —-50 -—-49 -—-48 -47
in Eq. (2.18. Applying Eq.(2.18 to H4, given in Eq.(3.3),
we find that oW,
I'e= 2(D§+ D%)FO. (5.7) FIG. 4. Autler-Townes probe absorption spectr8rtin units of

I‘gl) for the narrow bandwidth squeezed-vacuum cases DA

Hence, the bandwidth of the central feature for the DPA cas&'PPA (P), and b.roadfblilnd_sqzeezed va]:cu(u)wersus_ probe de-
is independent of the squeezing parameters as is seen in FIJ1iNg d®p (in units ofI'o) in the case of resonancé=0. In (a)

: . h d (b) by=10 andb,=15 and in the caséc) b,=600 andb,
];gnd_lf/;hf%rngg as in the ordinary vacuum. Note Ehat =900. In all case€)=100. The full line in the graphs represents
=Dj3= =0.

. he spectra in the absence of squeezed vacuum. Results for various
For a narrow bandwidth NDPA source of the squeeze&q5 are(i) ¢=0 (dashed ling (i) ¢= /2 (dotted line, (iii) ¢=

field, the parameter#l(w;) and FN(wi) are given in Eq. (dot-dashed ling In all casesws=w, anda="' for NDPA.
(2.19, and in this case we obtain
squeezing parameters and the deturdngor N—« and ¢

FC:2(D§+D%)F0+4NFO—8D2D3(N—M cos ). =1, the bandwidth reduces to
(5.2 ['c=2(D,—D3)2l+4N(1-4D,D5)Ty, (5.3

The first term corresponds to the normal vacuum bandwidthwhich for 6#0 is always greater than the bandwidth in the
the second term is always positive, and the third term can beormal vacuum. However, fof—0, D,,D3—1/2 and then
positive or negative depending on the phdsérhis effectis I'c—0, indicating that for a resonant driving field am
seen in Fig. 2. The bandwidth'- now depends on the —o the bandwidth of the central feature can be completely
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suppressed. In practice, this limit can be well approachethan that in the normal vacuum, where fo§=0,
even with relatively small values dfl. For example, with T's=3/2I'j. In practice, withN=1 the bandwidths of the
N=1 the bandwidth for the central feature is about 0'd7 Rabi sidebands are approximately 1.08§6which is close to
Now, we consider a broad bandwidth squeezed vacuuni’,. This result also agrees with the numerical result shown

In this case the expressions f(w;) andTy(w;) are inde- N Fig. 2b).

pendent ofws and are given by Finally, substituting Eq(5.4) into H,, we obtain band-
widths of the sidebands for the broad bandwidth squeezed
~ I'y . vacuum
M(w;)=— ?ez'¢M,
I's=(1+2D,D3)I'y+2NTI'3+4D,D3(N—M cos ¢)I'.
In(w)=(1+2N)T. (5.4 (5.10

Substituting these intbl, in Eq. (3.3), we find that the band- Maximum narrowing can occur fo§=0 and the phasg
width of the central Mollow feature is =0. Then the bandwidths of the Rabi sidebands are given by

I'c=2(D3+D3%I'y+4NT;—8D,D3(N—M cos¢)Ty. 3

Comparing with Eq(5.2), we see that this is identical to the , ,

NDPA case. Again the phase response of the bandwidth i§0t€ that the first term correctly predicts the normal vacuum

seen in Fig. 3. bandwidths in the case of resonanee=(Q). For the phase
From Egs.(3.10 and (3.11, the bandwidthl's of the ¢=0, the second term can be negati@6,37. This happens

Rabi sidebands of the Mollow probe absorption spectrum i$0r O0<N<1/8, with the maximum negative value about
given by JH,|, whereH, is given in Eq.(3.3. —0.08d’, for N~0.0303. Thus the narrowing of the Rabi

sidebands in the case of broad bandwidth squeezed vacuum
is very small. ForN>1, the bandwidth(5.10 reduces to
(1+2N)T'y independent of the detuning This broadening

has been observed in our numerical results F{g).3

Applying functionsM (w;) and'y(w;) from Eq. (2.18,
we find that for the narrow DPA source the bandwidth of the
left and right features of the Mollow probe absorption fea-
tures is

Fs=(1+2D,D3)I'y— ZDf(N— M cos¢)y. (5.6 B. Autler-Townes spectrum
) 5 ) ) Now we analyze the bandwidths of the Autler-Townes
Since Di=—4D,D3, the narrowing of the feature is pos- gpectrum. From Eq¢3.19 and(3.21) we see that the band-
sible only fory=0. ForN>1 and¢=0 the bandwidth re-  ygths of the two lines of the Autler-Townes probe absorp-
duces to tion spectrum are given by|Bo| and JHg|, respectively.
For the DPA case, the bandwidth of the left feature of the
I's=(172D2D3)T, G7  Autler-Townes probe absorption spectrum is given by

which is narrower than that in the normal vacujiifis= (1

+2D,D3)I'y]. Hence, in the DPA case the Rabi sidebands I'[=D,Iy+2D,D3(N—M cos¢)T'y. (5.12

can be narrowed below the normal vacuum level for all val-

ues of the detuning. The maximum narrowing, however, The firsttermD,I'y, is the bandwidth in the normal vacuum

appears folN>1 and 6=0, wherel'c=1/2I;. Again this and the second term is induced by the squeezed vacuum. The

narrowing is readily achieved even with relatively small val- phase dependence indicates a larger bandwidthgferr

ues ofN. For N=1, the bandwidths of the Rabi sidebandsthan for ¢=0 and this is seen in Fig.(&. In the limit N

are about 0.671,, which is very close to 1R,. The nar- —« and¢=0, the bandwidth of the feature goesgl,

rowing of the sidebands predicted by the analytical resultsvhich is much smaller than the bandwidihI' in the nor-

agrees perfectly with the numerical resuléee Fig. L mal vacuum. It is interesting to note that the bandwidth of
For the NDPA case, we find after substituting the func-the left feature can be reduced below the normal vacuum

tions M (w;) and Tn(w;) from Eg. (2.19 into H, that the Value for all positive detunings (6>0). Similarly, the right
bandwidths of the Rabi sidebands are feature in the DPA case is given by

_ . 2 . .
In this case, the Rabi sidebands can be narrowed below tHeP" N— and ¢=0 the bandwidth goes D3l'g, which is
normal vacuum level only fos=0 and phasep=m=. For ~much smaller than the bandwidt®;I'y in the normal

N>1 and¢= = the bandwidth can be written as vacuum. Therefore, the bandwidth of the right feature can be
reduced below the normal vacuum value for all negative de-
I's=Tg+2N(1—4D,D3)ly. (5.9  tunings § (6<<0). The numerical results are in agreement
with this result[see Fig. 4a)].
Clearly, the bandwidth is independent dfand equal td" In the NDPA case, the bandwidth of the left feature of the

only for =0, where D,D;=1. This bandwidth is smaller Autler-Townes probe absorption spectra is given by
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tions (5.14—(5.17 show that the narrowing of the Autler-
Townes spectral lines is intrinsically the narrow-bandwidth
effect and does not extend to the broadband case.

FL:D2F0+ NFO_2D2D3(N_ M cos ¢)FO (514)

In this case the linewidth is smaller faf= 7= compared to

¢=0 and this is seen in Fig(d). For = andN—x, T'|

reduces to VI. SUMMARY

(5.19 We have considered the Mollow and Autler-Townes
probe absorption spectra, of a three-level atom in a cascade

In this case the linewidth is broadened #6#0. Only for  cgnfiguration, with the lower transition coherently driven
6=0, where D,D;=1, the linewidth can be reduced below g4 coupled to the squeezed-vacuum field.

the normal vacuum value, where the narrowing froml’y/2 Analytical expressions for the spectra were obtained for
to 14, is pbsgrved. Similarly, the right feature in the ¢ squeezed-vacuum frequensy equal to the driving fre-
NDPA case is given by quency , and compared with the numerical results. The
NDPA and the broadband squeezed-vacuum fields both lead
(5.16 to the narrowing of the central feature of the Mollow probe

' absorption spectra, and in the linht—co the bandwidth of
where the left feature can be reduced tol’y/4nly for 5=0.  the feature can be reduced to zero. At the sidebands, a large

In the broad bandwidth regime, substituting the expresnarrowing is possible only with the DPA source of the

sions forl\'ﬁ(wi) andf,\,(wi) from Eq. (5.4, the bandwidths squeezed vacuum. Broad bandwidth source only leads to a

of the Autler-Townes probe absorption features are given b roadening of the Rabi _S|d¢bands_ except for N0<1/8,
hen a very small narrowing is possible. The Autler-Townes

probe absorption spectrum depends on the phase only for a

narrow bandwidth squeezed vacuum, for both the DPA and
(5.177 NDPA sources. We have found that for a broadband

squeezed vacuum the spectrum is independent of the phase
which are always broadened compared to that in the normand the spectral lines are always broadened compared to that

Fl,_:Dz(l_ D3)F0+ N(1_4D2D3)FO

F’R: D3Fo+ NFO_2D2D3(N_ M COoSs ¢)F0,

I'[=(Dy+N)I'g,

I'h=(Da+N)T,

vacuum independent of the squeezing correlations and thie the normal vacuum.
phase. The lack of phase dependence of the linewidth is seen

in Fig. 4(c). A similar result has also been found by Jakob

and Kryuchkyan 38].

Hence, the linewidths of the Autler-Townes probe absorp-
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