6,871 research outputs found

    Chargino Production and Decay in Photon-Photon-Collisions

    Get PDF
    We discuss the pair production of charginos in collisions of polarized photons γγχ~i+χ~i\gamma\gamma \to \tilde{\chi}_i^+ \tilde{\chi}_i^-, (i=1,2i=1,2) and the subsequent leptonic decay of the lighter chargino χ~1+χ~10e+νe\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 e^+ \nu_e including the complete spin correlations. Analytical formulae are given for the polarization and the spin-spin correlations of the charginos. Since the production is a pure QED process the decay dynamics can be studied separately. For high energy photons from Compton backscattering of polarized laser pulses off polarized electron beams numerical results are presented for the cross section, the angular distribution and the forward-backward asymmetry of the decay positron. Finally we study the dependence on the gaugino mass parameter M1M_1 and on the sneutrino mass for a gaugino-like MSSM scenario.Comment: 22 pages, 15 figures, version to be published in Eur. Phys. J.

    Zero-mode contribution to the light-front Hamiltonian of Yukawa type models

    Get PDF
    Light-front Hamiltonian for Yukawa type models is determined without the framework of canonical light-front formalism. Special attention is given to the contribution of zero modes.Comment: 14 pages, Latex, revised version with minor changes, Submitted to J.Phys.

    Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures

    Get PDF
    Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments

    Surfactant-Mediated Epitaxial Growth of Single-Layer Graphene in an Unconventional Orientation on SiC

    Full text link
    We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely R0R0^\circ rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a pre-oriented template to induce the unconventional orientation. Using spot profile analysis low energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently-bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.Comment: 7 pages, 3 figure

    Evidence for magnetic clusters in Ni1x_{1-x}Vx_{x} close to the quantum critical concentration

    Get PDF
    The d-metal alloy Ni1x_{1-x}Vx_{x} undergoes a quantum phase transition from a ferromagnetic ground state to a paramagnetic ground state as the vanadium concentration xx is increased. We present magnetization, ac-susceptibility and muon-spin relaxation data at several vanadium concentrations near the critical concentration xc11.6x_c \approx11.6% at which the onset of ferromagnetic order is suppressed to zero temperature. Below xcx_c, the muon data reveal a broad magnetic field distribution indicative of long-range ordered ferromagnetic state with spatial disorder. We show evidence of magnetic clusters in the ferromagnetic phase and close to the phase boundary in this disordered itinerant system as an important generic ingredient of a disordered quantum phase transition. In contrast, the temperature dependence of the magnetic susceptibility above xcx_c is best described in terms of a magnetic quantum Griffiths phase with a power-law distribution of fluctuation rates of dynamic magnetic clusters. At the lowest temperatures, the onset of a short-range ordered cluster-glass phase is recognized by an increase in the muon depolarization in transverse fields and maxima in ac-susceptibility.Comment: 6 pages, 5 figures, submitted to Proceedings of SCES 201

    Muon-spin relaxation and heat capacity measurements on the magnetoelectric and multiferroic pyroxenes LiFeSi2O6 and NaFeSi2O6

    Full text link
    The results of muon-spin relaxation and heat capacity measurements on two pyroxene compounds LiFeSi2O6 and NaFeSi2O6 demonstrate that despite their underlying structural similarity the magnetic ordering is considerably different. In LiFeSi2O6 a single muon precession frequency is observed below TN, consistent with a single peak at TN in the heat capacity and a commensurate magnetic structure. In applied magnetic fields the heat capacity peak splits in two. In contrast, for natural NaFeSi2O6, where multiferroicity has been observed in zero-magnetic-field, a rapid Gaussian depolarization is observed showing that the magnetic structure is more complex. Synthetic NaFeSi2O6 shows a single muon precession frequency but with a far larger damping rate than in the lithium compound. Heat capacity measurements reproduce the phase diagrams previously derived from other techniques and demonstrate that the magnetic entropy is mostly associated with the build up of correlations in the quasi-one-dimensional Fe3+ chains

    Large-uncertainty intelligent states for angular momentum and angle

    Get PDF
    The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases.Comment: 20 pages, 9 figures, submitted to J. Opt. B special issue in connection with ICSSUR 2005 conferenc

    Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)

    Get PDF
    The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers

    About direct Dark Matter detection in Next-to-Minimal Supersymmetric Standard Model

    Get PDF
    Direct dark matter detection is considered in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The effective neutralino-quark Lagrangian is obtained and event rates are calculated for the Ge-73 isotope. Accelerator and cosmological constraints on the NMSSM parameter space are included. By means of scanning the parameter space at the Fermi scale we show that the lightest neutralino could be detected in dark matter experiments with sizable event rate.Comment: latex, 12 pages, 2 ps-figures; extra LEP constraint is included, extra figure is added, recorrected version, resubmitted to Phys.Rev.
    corecore