189 research outputs found

    Phase locking the spin precession in a storage ring

    Get PDF
    This letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/cc bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (121\approx 121 kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a one standard deviation range of σ=0.21\sigma = 0.21 rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles

    Efficacy of Sofosbuvir, Velpatasvir, and GS-9857 in Patients With Hepatitis C Virus Genotype 2, 3, 4, or 6 Infections in an Open-Label, Phase 2 Trial

    Get PDF
    Background & Aims Studies are needed to determine the optimal regimen for patients with chronic hepatitis C virus (HCV) genotype 2, 3, 4, or 6 infections whose prior course of antiviral therapy has failed, and the feasibility of shortening treatment duration. We performed a phase 2 study to determine the efficacy and safety of the combination of the nucleotide polymerase inhibitor sofosbuvir, the NS5A inhibitor velpatasvir, and the NS3/4A protease inhibitor GS-9857 in these patients. Methods We performed a multicenter, open-label trial at 32 sites in the United States and 2 sites in New Zealand from March 3, 2015 to April 27, 2015. Our study included 128 treatment-naïve and treatment-experienced patients (1 with HCV genotype 1b; 33 with HCV genotype 2; 74 with HCV genotype 3; 17 with genotype HCV 4; and 3 with HCV genotype 6), with or without compensated cirrhosis. All patients received sofosbuvir-velpatasvir (400 mg/100 mg fixed-dose combination tablet) and GS-9857 (100 mg) once daily for 6–12 weeks. The primary end point was sustained virologic response 12 weeks after treatment (SVR12). Results After 6 weeks of treatment, SVR12s were achieved by 88% of treatment-naïve patients without cirrhosis (29 of 33; 95% confidence interval, 72%–97%). After 8 weeks of treatment, SVR12s were achieved by 93% of treatment-naïve patients with cirrhosis (28 of 30; 95% CI, 78%–99%). After 12 weeks of treatment, SVR12s were achieved by all treatment-experienced patients without cirrhosis (36 of 36; 95% CI, 90%–100%) and 97% of treatment-experienced patients with cirrhosis (28 of 29; 95% CI, 82%–100%). The most common adverse events were headache, diarrhea, fatigue, and nausea. Three patients (1%) discontinued treatment due to adverse events. Conclusions In a phase 2 open-label trial, we found sofosbuvir-velpatasvir plus GS-9857 (8 weeks in treatment-naïve patients or 12 weeks in treatment-experienced patients) to be safe and effective for patients with HCV genotype 2, 3, 4, or 6 infections, with or without compensated cirrhosis

    Investigation of cracks in GaN films grown by combined hydride and metal organic vapor-phase epitaxial method

    Get PDF
    Cracks appeared in GaN epitaxial layers which were grown by a novel method combining metal organic vapor-phase epitaxy (MOCVD) and hydride vapor-phase epitaxy (HVPE) in one chamber. The origin of cracks in a 22-μm thick GaN film was fully investigated by high-resolution X-ray diffraction (XRD), micro-Raman spectra, and scanning electron microscopy (SEM). Many cracks under the surface were first observed by SEM after etching for 10 min. By investigating the cross section of the sample with high-resolution micro-Raman spectra, the distribution of the stress along the depth was determined. From the interface of the film/substrate to the top surface of the film, several turnings were found. A large compressive stress existed at the interface. The stress went down as the detecting area was moved up from the interface to the overlayer, and it was maintained at a large value for a long depth area. Then it went down again, and it finally increased near the top surface. The cross-section of the film was observed after cleaving and etching for 2 min. It was found that the crystal quality of the healed part was nearly the same as the uncracked region. This indicated that cracking occurred in the growth, when the tensile stress accumulated and reached the critical value. Moreover, the cracks would heal because of high lateral growth rate

    Fractional deuteration applied to biomolecular solid-state NMR spectroscopy

    Get PDF
    Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D2O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at Hα and Hβ positions reduce spectral congestion in (1H,13C,15N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR

    Treatment of Acne Keloidalis Nuchae: A Systematic Review of the Literature

    Full text link
    Acne keloidalis nuchae (AKN) is a chronic inflammatory condition that leads to fibrotic plaques, papules and alopecia on the occiput and/or nape of the neck. Traditional medical management focuses on prevention, utilization of oral and topical antibiotics, and intralesional steroids in order to decrease inflammation and secondary infections. Unfortunately, therapy may require months of treatment to achieve incomplete results and recurrences are common. Surgical approach to treatment of lesions is invasive, may require general anesthesia and requires more time to recover. Light and laser therapies offer an alternative treatment for AKN. The present study systematically reviews the currently available literature on the treatment of AKN. While all modalities are discussed, light and laser therapy is emphasized due to its relatively unknown role in clinical management of AKN. The most studied modalities in the literature were the 1064-nm neodymium-doped yttrium aluminum garnet laser, 810-nm diode laser, and CO(2) laser, which allow for 82–95% improvement in 1–5 sessions. Moreover, side effects were minimal with transient erythema and mild burning being the most common. Overall, further larger-scale randomized head to head control trials are needed to determine optimal treatments
    corecore