7,087 research outputs found

    Theory of correlations between ultra-cold bosons released from an optical lattice

    Full text link
    In this paper we develop a theoretical description of the correlations between ultra-cold bosons after free expansion from confinement in an optical lattice. We consider the system evolution during expansion and give criteria for a far field regime. We develop expressions for first and second order two-point correlations based on a variety of commonly used approximations to the many-body state of the system including Bogoliubov, meanfield decoupling, and particle-hole perturbative solution about the perfect Mott-insulator state. Using these approaches we examine the effects of quantum depletion and pairing on the system correlations. Comparison with the directly calculated correlation functions is used to justify a Gaussian form of our theory from which we develop a general three-dimensional formalism for inhomogeneous lattice systems suitable for numerical calculations of realistic experimental regimes.Comment: 18 pages, 11 figures. To appear in Phys. Rev. A. (few minor changes made and typos fixed

    Stellar winds, dead zones, and coronal mass ejections

    Get PDF
    Axisymmetric stellar wind solutions are presented, obtained by numerically solving the ideal magnetohydrodynamic (MHD) equations. Stationary solutions are critically analysed using the knowledge of the flux functions. These flux functions enter in the general variational principle governing all axisymmetric stationary ideal MHD equilibria. The magnetized wind solutions for (differentially) rotating stars contain both a `wind' and a `dead' zone. We illustrate the influence of the magnetic field topology on the wind acceleration pattern, by varying the coronal field strength and the extent of the dead zone. This is evident from the resulting variations in the location and appearance of the critical curves where the wind speed equals the slow, Alfven, and fast speed. Larger dead zones cause effective, fairly isotropic acceleration to super-Alfvenic velocities as the polar, open field lines are forced to fan out rapidly with radial distance. A higher field strength moves the Alfven transition outwards. In the ecliptic, the wind outflow is clearly modulated by the extent of the dead zone. The combined effect of a fast stellar rotation and an equatorial `dead' zone in a bipolar field configuration can lead to efficient thermo-centrifugal equatorial winds. Such winds show both a strong poleward collimation and some equatorward streamline bending due to significant toroidal field pressure at mid-latitudes. We discuss how coronal mass ejections are then simulated on top of the transonic outflows.Comment: scheduled for Astrophys. J. 530 #2, Febr.20 2000 issue. 9 figures (as 6 jpeg and 8 eps files

    SIMULATION OF BIOEQUIVALENCE STUDY ON THE BASE OF DISSOLUTION CURVES

    Get PDF
    A computer method and software based on the in vitro dissolution ofdrug preparations has been elaborated for the estimation of bioequivalenceusing Microsoft Excel 2007, Visual Basic programming language. Themethod generates a „dissolution surface‖ from the parameters of time (Xaxis),from pH (Y-axis) and from the dissolved amount (A) in % of the drug.This dissolution surface allows the determination of the general dissolutioncurve of the test and reference preparations. By supposing that the absorptionrate constant is known from the literature, the change of the amount ofdissolved drug as the function of time can be determined. On the base of thisfunction the maximum amount of the dissolved drug in the gastrointestinaltract and the AUC can be calculated and the test/reference ratio can bedetermined. In the case of linear pharmacokinetics these ratios are identicalto the ratios of parameters that can be calculated in the circulation. Bygenerating parameters between the allowed biological limits the dissolveddrug – time curves of „volunteers‖ in the necessary number are created withthe randomly generated „residence times‖ and their confidence intervals canbe determined, i.e. on the base of dissolution curves bioequivalence can beestimated

    Synthetic Next Generation Very Large Array line observations of a massive star-forming cloud

    Get PDF
    Context. Studies of the interstellar medium and the pre-stellar cloud evolution require spectral line observations that have a high sensitivity and high angular and velocity resolution. Regions of high-mass star formation are particularly challenging because of line-of-sight confusion, inhomogeneous physical conditions, and potentially very high optical depths.Aims. We wish to quantify to what accuracy the physical conditions within a massive star-forming cloud can be determined from observations. We are particularly interested in the possibilities offered by the Next Generation Very Large Array (ngVLA) interferometer.Methods. We used data from a magnetohydrodynamic simulation of star formation in a high-density environment. We concentrated on the study of a filamentary structure that has physical properties similar to a small infrared-dark cloud. We produced synthetic observations for spectral lines observable with the ngVLA and analysed these to measure column density, gas temperature, and kinematics. Results were compared to ideal line observations and the actual 3D model.Results. For a nominal cloud distance of 4kpc, ngVLA provides a resolution of similar to 0.01 pc even in its most compact configuration. For abundant molecules, such as HCO+, NH3, N2H+, and CO isotopomers, cloud kinematics and structure can be mapped down to subarcsecond scales in just a few hours. For NH3, a reliable column density map could be obtained for the entire 15 '' x 40 '' cloud, even without the help of additional single-dish data, and kinetic temperatures are recovered to a precision of similar to 1 K. At higher frequencies, the loss of large-scale emission becomes noticeable. The line observations are seen to accurately trace the cloud kinematics, except for the largest scales, where some artefacts appear due to the filtering of low spatial frequencies. The line-of-sight confusion complicates the interpretation of the kinematics, and the usefulness of collapse indicators based on the expected blue asymmetry of optically thick lines is limited.Conclusions. The ngVLA will be able to provide accurate data on the small-scale structure and the physical and chemical state of star-forming clouds, even in high-mass star-forming regions at kiloparsec distances. Complementary single-dish data are still essential for estimates of the total column density and the large-scale kinematics.Peer reviewe

    Ion-implantation induced anomalous surface amorphization in silicon

    Get PDF
    Spectroscopic ellipsometry (SE), high-depth-resolution Rutherford backscattering (RBS) and channeling have been used to examine the surface damage formed by room temperature N and B implantation into silicon. For the analysis of the SE data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fraction of the amorphous silicon component in the layers) by linear regression. The dependence of the thickness of the surface-damaged silicon layer (beneath the native oxide layer) on the implantation parameters was determined: the higher the dose, the thicker the disordered layer at the surface. The mechanism of the surface amorphization process is explained in relation to the ion beam induced layer-by-layer amorphization. The results demonstrate the applicability of Spectroscopic ellipsometry with a proper optical model. RBS, as an independent cross-checking method supported the constructed optical model

    Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from \u3cem\u3eShigella flexneri\u3c/em\u3e

    Get PDF
    Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents

    MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH INCLUDING SOLAR CYCLE VARIATIONS OF MAGNETIC FIELD INTENSITY

    Get PDF
    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow's radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic field derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ~100 km s[superscript −1] larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.United States. National Aeronautics and Space Administration (Earth and Space Science Fellowship Program Grant NNX14AO14H
    • …
    corecore