Axisymmetric stellar wind solutions are presented, obtained by numerically
solving the ideal magnetohydrodynamic (MHD) equations. Stationary solutions are
critically analysed using the knowledge of the flux functions. These flux
functions enter in the general variational principle governing all axisymmetric
stationary ideal MHD equilibria. The magnetized wind solutions for
(differentially) rotating stars contain both a `wind' and a `dead' zone. We
illustrate the influence of the magnetic field topology on the wind
acceleration pattern, by varying the coronal field strength and the extent of
the dead zone. This is evident from the resulting variations in the location
and appearance of the critical curves where the wind speed equals the slow,
Alfven, and fast speed. Larger dead zones cause effective, fairly isotropic
acceleration to super-Alfvenic velocities as the polar, open field lines are
forced to fan out rapidly with radial distance. A higher field strength moves
the Alfven transition outwards. In the ecliptic, the wind outflow is clearly
modulated by the extent of the dead zone. The combined effect of a fast stellar
rotation and an equatorial `dead' zone in a bipolar field configuration can
lead to efficient thermo-centrifugal equatorial winds. Such winds show both a
strong poleward collimation and some equatorward streamline bending due to
significant toroidal field pressure at mid-latitudes. We discuss how coronal
mass ejections are then simulated on top of the transonic outflows.Comment: scheduled for Astrophys. J. 530 #2, Febr.20 2000 issue. 9 figures (as
6 jpeg and 8 eps files