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Abstract: Gram-negative pathogens often use conserved type three 

secretion systems (T3SS) for virulence. The Shigella type three secretion 

apparatus (T3SA) penetrates the host cell membrane and provides a 

unidirectional conduit for injection of effectors into host cells. The protein 

Spa47 localizes to the base of the apparatus and is speculated to be an 

ATPase that provides the energy for T3SA formation and secretion. Here, we 

developed an expression and purification protocol, producing active Spa47 

and providing the first direct evidence that Spa47 is a bona fide ATPase. 

Additionally, size exclusion chromatography and analytical ultracentrifugation 

identified multiple oligomeric species of Spa47 with the largest greater than 8 

fold more active for ATP hydrolysis than the monomer. An ATPase inactive 

Spa47 point mutant was then engineered by targeting a conserved Lysine 

within the predicted Walker A motif of Spa47. Interestingly, the mutant 

maintained a similar oligomerization pattern as active Spa47, but was unable 

to restore invasion phenotype when used to complement a spa47 null S. 

flexneri strain. Together, these results identify Spa47 as a Shigella T3SS 

ATPase and suggest that its activity is linked to oligomerization, perhaps as a 

regulatory mechanism as seen in some related pathogens. Additionally, 

Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, 

providing a strong platform for additional studies dissecting its role in 

virulence and providing an attractive target for anti-infective agents. 

 

Keywords: type III secretion system (T3SS); virulence factor; protein 

export; ATP; ADP; ATPase; oligomerization  

 

Introduction 
 

Shigella species cause a severe form of bacillary dysentery 

(shigellosis) throughout the world with an estimated 90 million annual 

infections responsible for greater than 100,000 deaths each year.1 

Shigella require as few as 10–100 organisms to cause infection and 
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are efficiently spread through the fecal oral route and/or contaminated 

drinking water.2 Most reported cases of shigellosis occur in developing 

regions where sanitation and access to clean drinking water are 

limited. Increasing reports in industrialized regions3 and the 

appearance of antibiotic resistant strains further emphasize the need 

to better understand the mechanism of Shigella virulence and 

specifically the means by which it invades targeted host cells.4 

 

Shigella invasion and subsequent spread throughout the colonic 

epithelium relies on a complex type three secretion system (T3SS) 

including effector proteins that are directly injected into host cell 

cytoplasm and the needle-like apparatus that facilitates effector 

transfer.5 The type three secretion apparatus (T3SA) is highly 

conserved and resembles a nano-needle and syringe consisting of a 

cytoplasmic bulb, basal body that spans the inner and outer 

membranes of the bacterium, a hollow needle that extends beyond the 

thick LPS layer, and an associated tip complex that interacts with the 

host cell membrane (Fig. 1).6,7 Effector proteins and those that make 

up the T3SA tip complex are secreted through the 2.5 nm diameter 

channel of the MxiH needle both as the complex matures and upon 

activation of the system.8–11 Proper timing and levels of secretion 

are essential for virulence, making identification of the trigger 

mechanism and driving force of secretion of great interest.12,13 

Sequence and structural similarities between the b-subunit of F1Fo ATP 

synthase,14 FliI of the bacterial flagellar system,15 and identified 

ATPases associated with the translocon-associated T3SS apparatus of 

several pathogens16–18 suggest that many T3SSs contain an ATPase at 

the base of the needle which could provide the necessary energy 

source for protein secretion.19,20 

 

The Shigella T3SS protein Spa47 shares 37.4% sequence 

identity and 53.6% similarity to the Salmonella enterica ATPase FliI 

which drives hook rotation responsible for flagellar motion and even 

higher levels of homology to identified T3SS ATPases from Escherichia, 

Yersinia, and Chlamydophila species (40.1%, 42.0% and 43.4% 

identity to Spa47, respectively) as determined by the alignment 

software Clustal Omega. Additionally, Spa47 knockout strains of S. 

flexneri do not properly secrete some T3SS proteins including MxiH 

which is necessary for construction of the needle.21 As a result, Spa47 
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is proposed to be a Shigella T3SS ATPase which may play a vital role 

in virulence by powering the T3SA machinery. Here, we describe the 

development of an expression and purification methodology for Spa47, 

allowing us to directly evaluate its ATPase activity in vitro. ATPase 

activity assays together with biophysical characterization of Spa47 

found that the oligomerization state of the enzyme significantly 

impacts its activity, providing a potential mechanism for in vivo control 

over the associated T3SS. Specifically, the most active form identified 

purifies as a stable homo-oligomer while the monomeric species 

are eight-fold less active. A Spa47 point mutant was generated in the 

predicted catalytic Walker A domain to prevent ATP binding and 

provide an ATPase inactive Spa47 species. The oligomeric distribution 

of the mutant was similar to native Spa47 though it is unable to 

hydrolyze ATP and when used to complement a spa47 knockout 

Shigella strain, is unable to restore the invasion phenotype. The 

overall findings identify Spa47 as an oligomerization-dependent 

active Shigella T3SS ATPase and suggest that its ability to hydrolyze 

ATP is key to the Shigella invasion phenotype and ultimately virulence. 

 

Results 
 

Expression and purification of an active S. flexneri T3SS 

ATPase 
 

T3SS ATPases from several organisms have been successfully 

expressed and purified, allowing them to be studied both structurally 

and biochemically.16,22 While these findings have been key in 

understanding the role of ATPases in T3SSs, work with Shigella 

Spa47 has proven challenging and has limited the understanding of its 

role in the otherwise well-defined Shigella system. Here, we have 

overcome the hurdle of Spa47 purification by generating a CBD-tagged 

Spa47 fusion, resulting in E. coli expression of soluble Spa47 

containing an N-terminal CBD attached through an intein linker [Fig. 

2(A)]. Affinity purification with chitin resin followed by DTT-induced 

intein cleavage produced CBD-less Spa47 at relatively high purity [Fig. 

2(B)]. Negative selection using Q Sepharose anion exchange 

chromatography further removed contaminants and resulted in highly 

soluble full length recombinant Spa47 that was ≥85% pure (by SDS 
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PAGE) with identity confirmed by in gel digestion followed by tandem 

mass spectrometry. 

 

Initial purification was followed by SEC to provide an additional 

purification step and as a means to characterize the oligomerization 

state of the recombinant Spa47. The elution profile identified multiple 

discrete species of Spa47 with the majority of the protein eluting later 

in the separation, suggesting that the recombinant Spa47 purified in 

multiple oligomeric states with the main peaks eluting at ~0.4 and 0.6 

column volumes, representing species III and I, respectively [Fig. 

3(A,B)]. While we were not expecting such a distribution, ATPase 

oligomerization is not uncommon and is known to be essential for 

activity of the hetero-hexameric F1Fo ATP synthase27 as well as 

suspected to play an important role in activation and control of 

hydrolysis for several T3SS ATPases,22,25,26,28 providing a potential 

mechanism for regulation. We next tested if the purified Spa47 was 

active with respect to ATP hydrolysis which would not only validate the 

expression/purification method, but also confirm the hypothesis that 

Spa47 is a T3SS ATPase. As a first approach, the ATPase activity of 

each of the SEC separated Spa47 oligomers was tested. Radiolabeled 

ATP was mixed with a fixed volume of protein from each fraction and 

the formation of ADP was monitored. The results show a bimodal 

distribution of activity that precisely follows the protein elution profile, 

turning over nearly all of the 500 μM ATP in each of the peak fractions 

under the conditions tested [Fig. 3(C,D)]. Together, these results 

suggest that the recombinant Spa47 is not only active, but that it 

probably exists in multiple oligomeric forms. 

 

Mass spectrometry identified the purified protein as Shigella 

Spa47 (data not shown), however since Spa47 has not previously been 

directly tested for activity, we felt it was important to generate an 

ATPase inactive Spa47 mutant as a negative control to ensure that the 

observed ATPase activity was in fact coming from Spa47 and not a co-

purifying contaminant. A Spa47 point mutant targeting the predicted 

Walker A motif was engineered by substituting an Alanine for Lysine 

165. This residue was chosen based on sequence conservation and 

previous studies showing that the corresponding residues in FliI 

(Salmonella)29 and EscN (E. coli)26 are responsible for stabilizing the 

negative charge of ATP, supporting substrate interaction within the 

http://dx.doi.org/10.1002/pro.2917
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Protein Science, Vol. 25, No. 5 (May 2016): pg. 1037-1048. DOI. This article is © Wiley and permission has been granted 
for this version to appear in e-Publications@Marquette. Wiley does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Wiley. 

6 

 

enzyme active site. The Spa47K165A mutant was expressed and purified 

exactly as was done for the native Spa47 construct with SEC analysis 

of the Spa47K165A maintaining a nearly identical oligomerization profile 

as native Spa47 (Fig. 4) with monomeric (I) and oligomeric (III) 

species evident in the chromatogram. When tested for ATP hydrolysis 

activity, Spa47K165A was inactive, with less than 4 µM total ADP 

observed following any reaction (Fig. 4 insert), compared to nearly 

500 µM ADP for wild-type Spa47. These data not only suggest that 

Spa47 belongs to the Walker type ATPase family,30 but also served as 

a control confirming that observed activity levels for native Spa47 

were the direct result of Spa47 catalyzed ATP hydrolysis. Additionally, 

these results suggest that ATP hydrolysis by Spa47 is not a 

requirement for oligomerization however, we cannot rule out the 

possibility that perhaps transient higher order oligomers are driven by 

ATP hydrolysis. 

 

Recombinant Spa47 exists in discrete oligomeric states 
 

SEC elution profiles [Fig. 3(A)] suggest that Spa47 exists as a 

monomer (I) and consistent homooligomer (III); though a strong 

dependence of SEC on protein shape makes stoichiometry 

determination difficult. Sedimentation velocity analytical 

ultracentrifugation (SV-AUC) measures the sedimentation 

coefficient for each species in a solution. The sedimentation 

coefficient is a function of both size and shape, and thus interpreting 

molecular weights from the peaks of a sedimentation coefficient 

distribution requires prior knowledge of the shape of each species. 

However, with the monomer peak identified, stoichiometric 

assignments can be made by comparing the sedimentation coefficient 

of the oligomer to that of the monomer. The sedimentation coefficient 

ratios expected for geometric oligomers up to octamer are outlined,31 

and because sedimentation coefficients are compared directly to other 

sedimentation coefficients this analysis requires no knowledge of or 

deconvolution of the contribution of shape to the sedimentation 

coefficient. AUC analysis of purified recombinant Spa47 found two 

distinct peaks with sedimentation coefficients of 3.0±0.05 and 

5.5±0.02 Svedbergs (Fig. 5). The 3.0 s peak was the most abundant, 

and the sedimentation coefficient is consistent with Spa47 monomer 

(I) with a moderately elongated shape (frictional ratio of 1.57). If the 
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3.0 s peak is Spa47 monomer, comparing its sedimentation coefficient 

to that of the 5.5 s peak yields a ratio of 1.83. As a ratio of 1.75 is 

expected of a linear trimer, and a ratio of 1.86 is expected of a 

triangular trimer, the 5.5s peak can be tentatively assigned as trimeric 

homo-oligomers (III). A minor peak was also observed at 4.2±0.40 

(II) that is consistent with an intermediate species observed in the 

SEC profile (Fig. 3). Two additional peaks were observed in the 

sedimentation profiles and likely represent small contaminants that 

had not yet been removed as the AUC analysis was run prior to SEC 

to best determine species distribution in the population. The AUC 

results are consistent with the presence of three primary Spa47 

species identified as a monomer (I) and two higher order oligomers (II 

and III) as seen by SEC. AUC sedimentation coefficient distributions 

were additionally obtained for Spa47 ranging in concentration from 0.1 

to 1.0 mg mL-1 (Supporting Information Fig. S1), finding similar 

sedimentation profiles as observed in Figure 5. In these experiments 

the species previously identified as monomer sedimented consistently 

at ~3.0 s and the species we believe to be a trimer consistently 

sedimented at 5.2 s, regardless of concentration, ensuring that the 

assigned peaks are the result of discrete species and not an artifact 

resulting from a reaction boundary. 

 

SEC purification isolated the predominant monomeric (I) and 

oligomeric (III) Spa47 species allowing further characterization of the 

individual oligomers. CD analysis was performed on the isolated 

species of Spa47 and Spa47K165A (Fig. 6). The Far-UV CD spectra are 

nearly identical for each suggesting that major differences in structure 

are not driving the formation of oligomers or responsible for the 

observed increase in ATPase activity. Furthermore, the accompanying 

CD thermal unfolding curves exhibit very similar transition 

temperatures, suggesting that the protein structure is not significantly 

different between the two tested species. The monomeric species for 

both proteins do, however, exhibit sharper transitions than the 

oligomers (III), suggesting that the monomer protein–protein 

interactions reduce the cooperativity of unfolding. Interestingly, 

the isolated species were both found to primarily maintain their 

original oligomeric state and activity levels after nearly 1 month at 

4°C, suggesting that even though CD found their structure content to 
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be similar, they remain stable under the tested in vitro storage 

conditions (data not shown). 

 

Spa47 ATPase activity is oligomer-dependent 
 

Together, the SEC and AUC profiles indicate that recombinant 

Spa47 exists in multiple states with monomer being the predominant 

species with lesser populations of homo-oligomers (Figs. 3 and 5). 

While monomers, hexamers, and dodecamers of similar proteins have 

been captured before, the AUC results found that the largest observed 

Spa47 species (III) exhibits a sedimentation coefficient that is much 

lower than would be observed for a dodecamer or even homo-hexamer 

of Spa47 warranting further characterization. A single time-point 

activity assay of SEC fractions containing isolated Spa47 oligomers 

found that each of the oligomer species was able to hydrolyze ATP 

[Fig. 3(C,D)] although activity levels were not proportional to the 

quantity of protein in each fraction, suggesting that the formation of 

the oligomeric complex (III) leads to higher activity levels than seen in 

the monomeric and complex (II) species [Fig. 3(B)]. Reaction 

conditions were explored and it was found that consistent activity 

levels were observed at room temperature (21°C) and slightly 

basic pH (7.9) allowing a direct comparison of the SEC isolated wild-

type Spa47 oligomeric species as well as those for the Spa47K165A 

mutant. Reaction rates were determined by monitoring ATP hydrolysis 

through ADP product formation under equivalent enzyme and 

substrate concentrations (1.35 µM and 1.0 mM, respectively) as a 

function of time [Fig. 7(A)]. The results show that the Spa47K165A 

mutant essentially lacks the ability to hydrolyze ATP even after several 

minutes under these reaction conditions (kcat values ≤ 0.03 s-1) and 

identified significant differences in hydrolysis activity for the native 

Spa47 oligomers. Specifically, the Spa47 monomer and predicted 

homo-dimeric species (II) hydrolyze ATP at rates of 0.21±0.01 µM s-1 

and 0.14±0.01 µM s-1, respectively, while an equivalent concentration 

of oligomer (III) predicted to be a trimeric exhibits a rate of 1.60±0.05 

µM s-1. This corresponds to an apparent kcat of 1.18±0.03 s-1 for (III) 

which is similar to that of other T3SS ATPases including CdsN and 

FliI,23,24,29,32 suggesting that Spa47 oligomerization plays a key role in 

its ATPase activity. 
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ATPase active Spa47 is necessary for cellular invasion 
 

The full spectrum of T3SS ATPases functions remains unclear 

though several key studies have demonstrated their importance in vivo 

and have provided insight into some specific functions.21,33,34 While this 

represents the first direct evidence that Spa47 is an ATPase, its 

importance in Shigella virulence was shown previously when a 

knockout strain failed to properly secrete several essential T3SA 

structural proteins as well as effectors associated with virulence.21 We 

suspected that this secretion handicap would result in a loss of ability 

for S. flexneri to invade cultured HeLa cells and directly tested this 

using a gentamycin protection assay. As expected, we found a spa47 

null S. flexneri strain to be essentially noninvasive, exhibiting only 2% 

invasion compared to the wild-type strain 2457T. Complementation 

of the spa47 null strain with a pWPsf4 vector containing the native 

spa47 gene restored invasion properties to >90% of wild-type, 

showing that the presence of Spa47 is essential for cellular invasion 

and ultimately the ability of S. flexneri to cause infection (Table I). 

Because Spa47 has been shown to interact with several T3SA proteins 

within the basal body of the apparatus,21,35–37 the observed 

phenotype for spa47 null strains may result from a lack of necessary 

structural responsibilities and/or work directly provided by ATP 

hydrolysis. We used Spa47K165A developed and characterized in this 

study to provide an ATPase inactive form of Spa47 to complement the 

spa47 null strain. This strain containing a single Spa47 point mutation 

exhibited an identical noninvasive phenotype like the spa47 null strain, 

suggesting that Spa47 ATPase activity is necessary for cellular 

invasion. This does not, however, rule out the possibility that Spa47 

contributes key structural aspects to the basal body. However, 

uncoupling the structural and functional roles of Spa47 will require a 

dedicated set of phenotype and structure studies involving Spa47 

mutants such as the ATPase deficient Spa47K165A mutant described 

in this study. 

 

Discussion 
 

Shigella spp. rely on a T3SS to promote uptake by the epithelial 

cells lining the large intestine of their human hosts, initiate apoptosis 

of resident macrophages, escape endocytic vacuoles, and provide 
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actin-based motility.5,38,39 Providing these critical roles at the correct 

point during infection requires that the T3SS is under strict control at 

many levels including transcriptional and translational regulation as 

well as control over the maturation and activation of the injectosome 

itself.13 The secretion of T3SS translocator proteins and their 

incorporation into the maturing T3SA have been linked to 

environmental stimuli by small molecules such as the bile salt 

deoxycholate38,40,41 and lipid membrane components including 

cholesterol and sphingomyelin.11 This stimulation has been suggested 

to provide signals which essentially monitor progress as the pathogen 

enters the host and passes through the gastrointestinal tract, 

preparing the Shigella T3SA for invasion of the colonic epithelium. 

What has remained unclear, however, is what provides the driving 

force for protein secretion through the Shigella T3SA and ultimately 

how secretion is controlled. 

 

Sequence homology between the Shigella protein Spa47 and 

identified ATPases including the β-subunit of the hetero-hexameric F1Fo 

ATP synthase, FliI of the bacterial flagellar system, and ATPases 

associated with the translocon T3SS of several pathogens suggests 

that Spa47 is a T3SS-associated ATPase in Shigella and that it may 

provide the energy necessary for T3SS-associated secretion. 

Much of this stems from work showing that a spa47 null Shigella strain 

is unable to construct the T3SA and as a result fails to secrete T3SS 

proteins, including several Ipas and the phosphatase effector IpgD,21 

though challenges purifying Spa47 have prevented a direct correlation 

between Shigella T3SS activity and Spa47 ATP hydrolysis. In this 

study, we developed an expression and purification method for 

recombinant Spa47 that allowed us to provide the first direct 

characterization of its enzymatic activity and identify a link between 

Spa47 oligomer state and ATPase activity. Furthermore, we captured 

and characterized the active Spa47 homo-oligomer (III), finding that it 

likely represents a smaller T3SS ATPase complex than has been 

observed for other systems and provide evidence suggesting that 

Shigella invasion of host cells requires Spa47 catalyzed ATP hydrolysis. 

 

Size exclusion chromatography of recombinant Spa47 resulted 

in multiple resolved species, suggesting it exists in discrete oligomeric 

states [Fig. 3(A,B)] which were determined by AUC to be primarily 
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Spa47 monomer (I) with a lesser population of oligomers (II and III) 

which we predict to be Spa47 homo-dimers and homo-trimers, 

respectively, based on sedimentation coefficients obtained by AUC 

(Fig. 5). While the implication of this distribution was initially unclear, 

Spa47 activity was found to be highly dependent on oligomeric state, 

suggesting it may be an important component of a regulation 

mechanism. Many ATPases including members of the AAA and AAA+ 

classes undergo oligomerization to form active complexes, often 

serving as a means of regulation and providing an amplification of the 

mechanical force generated by ATP hydrolysis.42 One such example 

is the highly studied flagellar ATPase FliI (Spa47 homolog) whose 

oligomerization to an active hexamer is negatively influenced by 

interaction with the regulatory protein FliH and is stimulated by ATP 

and E. coli phospholipid binding.43,44 Regulation of the ATPase FliI 

through oligomerization provides tight control over export of flagellar 

proteins and may serve a similar role in the evolutionarily related 

Shigella T3SS. 

 

Activity profiles of the isolated Spa47 oligomers found that the 

activated oligomer (III) exhibited 8 fold higher activity levels than the 

monomer (I) (kcat = 18±0.03 s-1) [Fig. 7(A)], suggesting that Spa47 

activation may be controlled by oligomeric state and specifically 

formation of the observed complex. In contrast to FliI, however, Spa47 

formed oligomers in the absence of ATP (Figs. 3 and 5) as has been 

demonstrated for the T3SS ATPase HrcN from the plant pathogen 

Pseudomonas syringae.26 Although active hexameric, dodecameric, 

and even higher order oligomeric states have been reported, we 

believe that the observed active Spa47 complex (III) studied here 

represents a novel trimeric T3SS ATPase though additional work is 

required to confirm the precise stoichiometry of the active species. 

Additionally, while we cannot rule out the possibility of ATP driven 

higher order oligomerization of the active oligomer (III) (e.g., 

hexamer as seen in the transmission electron microscopy generated 

structure), 35 the ATP hydrolysis deficient Spa47K165A mutant displayed 

oligomeric behavior similar to wild-type Spa47 suggesting that ATP is 

not required for Spa47 oligomer formation as the equivalent 

lysine in FliI and EscN was needed to stabilize ATP binding.26,29 
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CD analysis of the monomeric and oligomeric (III) forms of wild-

type and the K165A Spa47 mutant found that each result in spectra 

characteristic of highly a-helical proteins (Fig. 6) consistent with the 

known structures of related T3SS ATPases.26,33,45 Together these 

results suggest that neither the oligomeric state nor the K165A 

mutation drastically affect the protein secondary structure. 

Additionally, the thermal unfolding curves exhibit similar transition 

temperatures while the active species (III) demonstrating shallower 

transitions reflecting the additional protein interactions of the 

multimeric state. Without atomic resolution structural data, it is 

impossible to entirely rule out protein misfolding as the reason for the 

appearance of the less active monomeric species. However, insight 

from related systems together with the data presented here support 

the hypothesis that Spa47 oligomerization is involved in activation and 

regulation of the Shigella T3SS. 

 

Recent transmission electron microscopy electron density maps 

provided new insight into the architecture of the Shigella T3SA sorting 

platform and confirmed the relevance of Spa47 oligomer formation by 

identifying a symmetric homo-hexameric Spa47 ring at the base of the 

intact T3SA. The Spa47 hexamer is positioned directly below the MxiA 

export gate35,46 suggesting that secreted proteins interact with Spa47 

prior to entering the apparatus needle for export. The structure further 

suggests that Spa47 is positioned via symmetric hexameric linkage to 

six individual Spa33 units of the C ring through direct interaction with 

MxiN, confirming yeast two-hybrid and coimmunoprecipitation assays 

that first described these interactions.21,36,37 The observed interaction 

between Spa47 and MxiN is particularly interesting as MxiN is 

homologous to the regulatory protein FliH in the flagellar export 

apparatus which appears to prevent formation of the active FliI homo-

hexamer, preventing the wasteful hydrolysis of ATP before the flagellar 

export apparatus is prepared for productive transport.43,44 A similar 

mechanism would be beneficial to the Shigella T3SS although the 

association of MxiN and Spa47 appears to be necessary for proper 

formation of the sorting platform35 and a mxiN null Shigella strain 

less efficiently secretes MxiH and MxiI, preventing proper T3SA needle 

formation.21 
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We suspect that the role of Spa47 in the Shigella T3SS is 

multifaceted, serving as both a structural component within the sorting 

platform and as an ATPase that provides the energy necessary for 

secretion, perhaps through recognition, chaperone release, and partial 

unfolding of transported proteins as has been demonstrated for the 

Salmonella enterica ATPase InvC.34 In Shigella, it has been shown that 

a spa47 null Shigella strain is unable to form the external needle 

structure of the T3SA and as a result is secretion and invasion 

deficient.21,47 We tested the invasion phenotype of a Shigella spa47 null 

strain complemented with the engineered ATPase inactive Spa47K165A 

mutant finding that it resulted in the same noninvasive phenotype as 

the null strain even though invasion was restored when complemented 

with native spa47. Together with recent structural findings35 and the 

enzymatic activity characterization provided in this study, it appears 

that Spa47 may play critical structural roles in the T3SA and is in fact 

a functional ATPase whose activity may be tied directly to Shigella 

virulence. The findings presented here are the result of overcoming the 

long-standing hurdle of recombinant expression and purification of the 

Shigella ATPase Spa47 and together have uniquely positioned us to 

begin answering a number of key questions regarding Spa47 

activation, T3SS secretion regulation, and potential 

structural/organizational roles of Spa47 within the sorting platform of 

the T3SA. Ultimately, answering these questions will require a direct 

comparison of protein interactions, phenotype assays, and further 

characterization of enzyme activity and structure. Together, the 

methods developed in this study to produce active recombinant Spa47, 

the generation of a key ATPase inactive Spa47 point mutant, and the 

link identified between Spa47 oligomeric state and ATPase activity will 

provide a strong platform for this additional work dissecting the 

mechanism of Spa47 catalyzed ATP hydrolysis and its role in the 

Shigella T3SS. 

 

Materials and Methods 
 

Materials 
 

Wild-type (WT) S. flexneri corresponds to the serotype 

2a 2457T strain originally isolated in 1954.48 The S. flexneri spa47 null 

strain was engineered by Abdelmounaaïm Allaoui as described in 
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Jouihri et al.21 E. coli strains and 2X ligation mix were from Novagen 

(Madison, WI). Restriction enzymes, the pTYB21 protein expression 

plasmid, PCR buffer, Phusion High-Fidelity polymerase, and chitin resin 

were purchased from New England Biolabs (Ipswich, MA). 

Oligonucleotide primers and the synthesized Spa47 gene were from 

Integrated DNA Technologies (Coralville, IA). The Superdex 16/600 

size exclusion and 5 mL Q FF columns were purchased from General 

Electric (Pittsburgh, PA). ATP was from Sigma–Aldrich (St. Louis, MO) 

and α-32P-ATP was from Perkin Elmer (Boston, MA). DTT and ampicillin 

were from Gold Biotechnology (St. Louis, MO). All other solutions and 

chemicals were of reagent grade. 

 

Methods 
 

Cloning. The Spa47 gene was purchased as a single-stranded 

gBlock product from Integrated DNA Technologies. A silent mutation 

was created within the gene to remove the native internal SapI 

restriction site. A PstI restriction site was included at the 3’ end of the 

gene immediately following the native stop codon and a SapI site 

followed by the sequence “CAAC” was introduced 5’ of the native 

start codon. The additional sequence maintains the proper reading 

frame and provides an N-terminal Asparagine in Spa47 which aids in 

efficient intein cleavage during protein purification. Doublestranded 

product was generated by amplifying the gBlock using complementary 

primers containing 5’-GGTGGT sequences to aid in digestion (5’-

GGTGGTTGCTCTTCCAACATGAGCTATACAAAATTGCT-3’ and 5’- 

GGTGGTCTGCAGTCATTATCTAATTGTTTCACCAATA-3’). The SapI/PstI 

digested gene was ligated into the expression plasmid pTYB21 which 

encodes an N-terminal chitin binding domain (CBD) and intein linker. 

The ligated product was transformed into E. coli Nova blue cells by 

heat shock and screened for the presence of spa47 via PCR. 

Sequences were verified by Sanger sequencing (Genewiz, Inc., South 

Plainfield, NJ). spa47 was cloned into the plasmid pWPsf4 by 

introducing NdeI and BamHI restriction sites at the 5’ and 3’ ends, 

respectively, and ligating into the digested vector backbone. 

Sequences were again verified by Sanger sequencing prior to 

transformation into electro-competent S. flexneri strains via 

electroporation. The Spa47K165A point mutation was made in both 
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pTYB21 and pWPsf4 using inverse PCR followed by sequence 

verification and transformation into E. coli and S. flexneri, respectively. 

 

Protein expression and purification. Spa47 and spa47K165A in 

pTYB21 were transformed into E. coli Tuner (DE3) cells and were 

grown overnight in LB Broth (Miller) containing 0.1 mg/mL ampicillin 

to ensure maintenance of the plasmid. A 5 mL L-1 of the starter culture 

was added to Terrific Broth media containing 0.1 mg mL-1 ampicillin 

and was grown to an OD600 of 0.8 at 37°C, 200 RPM. The culture was 

then cooled to 17°C before induction with 1 mM IPTG for ~20 h (17°C, 

200RPM). All subsequent steps were carried out at 4°C. Typical 

growths included 3 L of Spa47 expressing E. coli culture (1 L per 2.8-L 

baffled Fernbach flask) Cells were pelleted by centrifugation, resulting 

in typical cell pellet masses of ~27 g L-1, resuspended in binding buffer 

(20 mM Tris, 500 mM NaCl, pH 7.9), and lysed by sonication. The 

suspension was clarified by centrifugation and the supernatant run 

over a chitin affinity column (10 mL resin per liter of cultured cells) at 

1 mL min-1 followed by washing with ~20 bed volumes of Binding 

Buffer. The chitin beads were quickly equilibrated with 3 bed volumes 

of cleavage buffer (20 mM Tris, 500 mM NaCl, 50 mM DTT, pH 

7.9) and incubated overnight to cleave Spa47 from the chitin binding 

domain (CBD). Column elutions were collected three times per day 

until no further elution of Spa47 was observed by SDS-PAGE (~4 

days). Collected elutions were pooled and diluted to generate final 

buffer concentrations of 20 mM Tris, 100 mM NaCl, 5 mM DTT, pH 7.9, 

and further purified over a 5 mL Q Sepharose FF anion exchange 

column, consistently resulting in ~10 mg of Spa47 per liter of 

expression culture. The Q column provided a negative selection and 

the purified Spa47 in the flow through was concentrated using an 

Amicon Ultra centrifugal filter unit with a 30-kDa molecular weight cut 

off and further purified/characterized using a Superdex 16/600 size 

exclusion column equilibrated with 20 mM Tris, 100 mM NaCl, 5 mM 

DTT, pH 7.9. Spa47 contains no Tryptophan residues, resulting in a 

low molar A280 extinction coefficient that is below the limits of 

quantitation for the concentrations of Spa47 obtained and used 

throughout the study. All Spa47 concentrations were determined 

using a more sensitive Bradford protein assay with bovine serum 

albumin as a standard after verifying that comparison to a BSA 

standard curve provides accurate Spa47 quantitation results. All Spa47 
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concentrations are reported in monomer concentration units for 

consistency and clarity.  

 

ATP hydrolysis activity assays. A single time point activity assay was 

used to observe ATP hydrolysis from collected size exclusion 

chromatography (SEC) fractions of Spa47 and Spa47K165A. The 

reactions were initiated by combining protein from the SEC fractions 

with a prepared ATP solution resulting in a final concentration of 0.5 

mM ATP, 10 mM MgCl2, and 0.5 μCi (~300 nM) α-32P-ATP. The 

reactions were allowed to proceed for 15 min before quenching with 

the addition of EDTA to a final concentration of 0.25 M. The level of 

ATP hydrolysis was quantified by first spotting 1 mL of the quenched 

reaction onto a TLC plate and developing in 0.6 M potassium 

phosphate buffer (pH 3.4) for 70 min. The α-32P-ATP and the α-32P -

ADP were detected with a Storm PhosphorImager (Molecular 

Dynamics) and quantified using associated ImageQuant software 

(Molecular Dynamics). A multiple time point activity assay was used to 

determine apparent kcat values for Spa47 species and was carried out 

under similar conditions to the single time point assay described 

above. Specifically, the purified Spa47 concentration was held constant 

at 1.35 μM for each species, the ATP concentration was increased to 1 

mM, and samples were removed from the reaction every 30 s for 

3.5 min and rapidly quenched with 0.25 M EDTA prior to separation via 

TLC. 

 

Far-UV circular dichroism (CD). Far-UV CD spectra and 

thermal stability melts were obtained for isolated monomer (I) and 

oligomer fractions (III) of Spa47 and Spa47K165A. Measurements were 

obtained using a JASCO model J-1500 spectropolarimeter with a Peltier 

temperature controller (Jasco, Easton, MD). Spectra were obtained 

from 200 to 260 nm at 10°C with a 0.1 cm path length, 0.5 nm 

spectral resolution, 50 nm min-1 scan rate and a 1-s data integration 

time. Secondary structure thermal stability profiles were generated by 

monitoring CD signal at 222 nm while the temperature was increased 

from 10 to 90°C at 0.3°C min-1. All measurements were performed on 

0.3 mg mL-1 protein concentration. CD signals were converted to mean 

residue molar ellipticity. 
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Sedimentation velocity analytical ultracentrifugation. 

Sedimentation velocity analytical ultracentrifugation (SV-AUC) 

experiments were conducted using an Optima XL-I (Beckman Coulter, 

Fullerton, CA) analytical ultracentrifuge equipped with an interference 

optical detection system. 1.5 mg mL-1 Spa47 and a buffer reference 

were loaded into Beckman charcoal-epon two sector cells with 12-mm 

path lengths and sapphire windows. The samples were analyzed at 

20°C and 40,000 RPM, using interference detection and scanning until 

complete sedimentation was achieved. The data were regularized with 

a confidence interval of 0.95 and analyzed using the software program 

Sedfit49 with a continuous c(s) distribution and 500 scans. The Spa47 

partial specific volume (0.7422 mL g-1) and the buffer density and 

viscosity used in the analysis (1.0031 g mL-1 and 0.01018 Poise, 

respectively) were calculated using Sednterp.50 Additional SVAUC 

distributions were collected for Spa47 concentrations of 1.0, 0.66, and 

0.1 mg mL-1 Spa47 to ensure that the assigned peaks are the result of 

discrete species and not an artifact resulting from a reaction boundary 

(Supporting Information Fig. S1). 

 

Bacterial invasion of epithelial cells. S. flexneri invasion of 

cultured HeLa cells was monitored by a gentamicin protection assay as 

previously described.51 Sterile 24-well plates were seeded with 

passaged HeLa cells and grown overnight in DMEM supplemented with 

10% fetal calf serum, penicillin, and streptomycin at 100% relative 

humidity, 37°C, and 5% CO2. Tested S. flexneri strains were streaked 

onto tryptic soy agar plates containing 0.025% Congo red and grown 

overnight at 37°C. Small cultures containing appropriate antibiotics to 

maintain the transformed plasmid were inoculated from the agar 

plates and grown to an OD600 ~0.4 at 37°C and 200 RPM. Equivalent 

bacterial loads were then introduced to the cultured HeLa cells as 

described previously.51 The plates were centrifuged at 1000 g 

to synchronize contact between the bacteria and HeLa cells, incubated 

at 37°C for 30 min, and rinsed to remove most of the extracellular 

bacteria. Shigella that had not successfully invaded the HeLa cells 

were killed by treatment with 50 lg mL-1 gentamicin. Bacteria that had 

invaded were visualized by lysing the host cells with 1% agarose in 

water and overlaying with a 2⨯ LB agar solution. Overnight incubation 

at 37°C resulted in colony formation that is quantified and used to 
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provide relative levels of invasiveness between the tested S. flexneri 

strains. 
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Figure 1. Organization of the Type III secretion system. Cartoon of the T3SS from 
Shigella is shown with the basal body spanning the inner membrane (IM) and outer 
membrane (OM) of the pathogen and the external needle inserting into the host 
membrane (HM). The Spa47 hexamer is depicted at the base of the needle assembly. 

Arrows show the path of the effector protein passage from the pathogen to the host 
through the apparatus. 
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Figure 2. Purification of Spa47. (A) N-terminal chitin binding domain (CBD) and Intein 
tagged version of Spa47 used for overexpression and purification. The site of cleavage 
is shown. (B) SDS-PAGE of Spa47 at various stages during protein purification. Whole 
cell lysate (WC), clarified supernatant (Sup), cleaved protein after elution from the 

chitin column (Chitin) and, purified Spa47 from the Q-sepharose (Q) are shown. ** 
and * denote the corresponding positions of the uncleaved CBD-Intein-Spa47 and 
cleaved Spa47, respectively. 
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Figure 3. Oligomeric forms of Spa47. (A) Elution profile from size exclusion 
chromatographic (SEC) separation of Spa47 and (B) SDS-PAGE analysis of protein in 
each fraction. (C) Thin layer chromatograph (TLC) showing the fraction of α32P-ADP 
formed from α32P-ATP after incubation with protein from the corresponding fraction in 
SEC separation (above) and (D) is the quantitation of total ADP formed in each SEC 
fraction. 
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Figure 4. Size exclusion fractionation of Spa47K165A. Profile from SEC separation of 
the Walker A Spa47 mutant shows oligomeric distribution similar to wild-type Spa47. 
Insert shows background levels of ATP hydrolysis by the mutant Spa47 protein. 
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Figure 5. Sedimentation velocity analytical ultracentrifugation analysis of Spa47 
oligomerization. (A) Representative interference scans of purified Spa47 monitored 

during sedimentation velocity analytical ultracentrifugation (SV-AUC) and (B) 
representative residuals from fitting the data to a continuous c(s) distribution model as 

described in the methods. (C) Representative sedimentation coefficient distribution 
(c(s) versus S) showing the presence of distinct Spa47 species with sedimentation 
coefficients of 3.0±0.05, 4.2±0.40, and 5.5±0.02 Svedbergs. Sedimentation 
coefficients represent mean±SD from 3 independent measurements. 
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Figure 6. Circular dichroism (CD) analysis of Spa47. (A) Far-UV CD spectra for 
monomeric (I) and oligomeric (III) forms of wild-type Spa47 and Spa47K165A exhibit 

minima at 208 nm and 222 nm, characteristic of proteins containing high ahelical 
secondary structure content. (B) Thermal unfolding profiles were collected by 
monitoring CD signal at 222 nm as the sample temperature increased from 10 to 
90°C. The transition temperatures are similar for each species while the oligomeric 

(III) forms exhibit more gradual transitions compared 
to the monomers. 
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Figure 7. ATPase activity of Spa47. Kinetics of ATP hydrolysis by various oligomeric 
forms of Spa47. The active oligomeric form (III) of Spa47 hydrolyzes ATP with a kcat of 
1.18±0.03 s-1, which is 8- to 10-fold faster than the monomer and smaller oligomeric 
form (II) (kcat = 15±0.01 s-1 and 0.11±0.01 s-1, respectively). All forms of the 

Spa47K165A mutant protein are essentially inactive for ATP hydrolysis with kcat values 
≤0.03±0.01 s-1. Each data point represents the mean±SD of three independent 
measurements from two separate protein preparations. 
 

 

Table I. Invasion Phenotype of Spa47 Mutants 

 
Gentamycin protection data outlining the effects of Spa47 mutations on virulence. This 
assay measures the ability of S. flexneri to invade host cells. The results represent a 
percentage of colonies formed relative to a wild-type 2457T S. flexneri strain±S.D. 
n=3 independent experiments each performed in triplicate with an average of 182 
colonies for WT. 
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