154 research outputs found

    Reconstruction of the geometry of volcanic vents by trajectory tracking of fast ejecta - the case of the Eyjafjallajökull 2010 eruption (Iceland)

    Get PDF
    Two methods are introduced to estimate the depth of origin of ejecta trajectories (depth to magma level in conduit) and the diameter of a conduit in an erupting crater, using analysis of videos from the Eyjafjallajökull 2010 eruption to evaluate their applicability. Both methods rely on the identification of straight, initial trajectories of fast ejecta, observed near the crater rims before they are appreciably bent by air drag and gravity. In the first method, through tracking these straight trajectories and identifying a cut-off angle, the inner diameter and the depth level of the vent can be constrained. In the second method, the intersection point of straight trajectories from individual pulses is used to determine the maximum possible depth from which the tracked ejecta originated and the width of the region from which the pulses emanated. The two methods give nearly identical results on the depth to magma level in the crater of Eyjafjallajökull on 8 to 10 May of 51 ± 7 m. The inner vent diameter, at the level of origin of the pulses and ejecta, is found to have been 8 to 15 m. These methods open up the possibility to feed (near) real-time monitoring systems with otherwise inaccessible information about vent geometry during an ongoing eruption and help defining important eruption source parameters

    Scanning Near Field Optical Microscopy (SNOM) in Reflection or Scanning Optical Tunneling Microscopy (SOTM)

    Get PDF
    The recent exploitation of near field optics opened a new branch of light microscopy beyond the diffraction limit. With scanning near field optical microscopy a lateral resolution of 20 and 50 nm was obtained in transmission and reflection, respectively. In a novel optical tunneling mode, also the topography of pure phase objects has been imaged at a resolution of 50 nm laterally and 1 nm vertically

    Investigating Source Conditions and Controlling Parameters of Explosive Eruptions: Some Experimental-Observational- Modelling Case Studies

    Get PDF
    Explosive volcanic eruptions are complex systems that can generate a variety of hazardous phenomena, for example, the injection of volcanic ash into the atmosphere or the generation of pyroclastic density currents. Explosive eruptions occur when a turbulent multiphase mixture, initially predominantly composedf of fragmented magma and gases, is injected from the volcanic vent into the atmosphere. For plume modelling purposes, a specific volcanic eruption scenario based on eruption type, style or magnitude is strictly linked to magmatic and vent conditions, despite the subsequent evolution of the plume being influenced by the interaction of the erupted material with the atmosphere. In this chapter, different methodologies for investigating eruptive source conditions and the subsequent evolution of the eruptive plumes are presented. The methodologies range from observational techniques to large-scale experiments and numerical models. Results confirm the relevance of measuring and observing source conditions, as such studies can improve predictions of the hazards of eruptive columns. The results also demonstrate the need for fundamental future research specifically tailored to answer some of the still open questions: the effect of unsteady flow conditions at the source on the eruptive column dynamics and the interaction between a convective plume and wind

    Quantifying the Effect of Wind on Volcanic Plumes: Implications for Plume Modeling

    Get PDF
    The considerable effects that wind can have on estimates of mass eruption rates (MERs) in explosive eruptions based on volcanic plume height are well known but difficult to quantify rigorously. Many explicitly wind-affected plume models have the additional difficulty that they require the use of centerline heights of bent-over plumes, a parameter not easily obtained directly from observational data. We tested two such models by using the time series of varying plume heights and windspeeds of the 2010 eruption. The mapped fallout and photos taken during this eruption allow us to estimate the plume geometry and to empirically constrain input parameters for the two models tested. Two strategies are presented to correct the difference in maximum plume height and centerline height: (a) based on plume radius, and (b) by using the plume type parameter Π, which quantifies the relative influence of buoyancy and cross-wind on the plume dynamics, to discriminate weak, intermediate and strong plumes. The results indicate that it may be more appropriate to classify plumes as either wind-dominated, intermediate or buoyancy-dominated, where the relative effects of both wind and MER define the type. The analysis of the Eyjafjallajökull data shows that the MER estimates from both models are considerably improved when a plume-type dependent centerline-correction is applied. For one model, we varied the wind entrainment coefficient β. For this particular eruption, we find that the best value for β lies between 0.28 and 0.36, unlike previous suggestions that set this parameter to 0.50.Icelandic Research Fund. Grant number:206527-051Pre-print (óritrýnt handrit

    Controls on andesitic glaciovolcanism at ice-capped volcanoes from field and experimental studies

    Get PDF
    Glaciovolcanic deposits at Tongariro and Ruapehu volcanoes, New Zealand, represent diverse styles of interaction between wet-based glaciers and andesitic lava. There are ice-confined lavas, and also hydroclastic breccia and subaqueous pyroclastic deposits that formed during effusive and explosive eruptions into meltwater beneath the glacier; they are rare among globally reported products of andesitic glaciovolcanism. The apparent lack of hydrovolcanically fragmented andesite at ice-capped volcanoes has been attributed to a lack of meltwater at the interaction sites because either the thermal characteristics of andesite limit meltwater production or meltwater drains out through leaky glaciers and down steep volcano slopes. We used published field evidence and novel, dynamic andesite-ice experiments to show that, in some cases, meltwater accumulates under glaciers on andesitic volcanoes and that meltwater production rates increase as andesite pushes against an ice wall. We concur with models for eruptions beneath ice sheets showing that the glacial conditions and pre-eruption edifice morphology are more important controls on the style of glaciovolcanism and its products than magma composition and the thermal properties of magmas. Glaciovolcanic products can be useful proxies for paleoenvironment, and the range of andesitic products and the hydrological environments in which andesite erupts are greater than hitherto appreciated

    Probing the shape of atoms in real space

    Get PDF
    The structure of single atoms in real space is investigated by scanning tunneling microscopy. Very high resolution is possible by a dramatic reduction of the tip-sample distance. The instabilities which are normally encountered when using small tip-sample distances are avoided by oscillating the tip of the scanning tunneling microscope vertically with respect to the sample. The surface atoms of Si(111)-(7 x 7) with their well-known electronic configuration are used to image individual samarium, cobalt, iron and silicon atoms. The resulting images resemble the charge density corresponding to 4f, 3d and 3p atomic orbitals.Comment: Submitted to Phys. Rev. B, 17 pages, 7 figure

    The effect of wind and plume height reconstruction methods on the accuracy of simple plume models — a second look at the 2010 Eyjafjallajökull eruption

    Get PDF
    Real-time monitoring of volcanic ash plumes with the aim to estimate the mass eruption rate is crucial for predicting atmospheric ash concentration. Mass eruption rates are usually assessed by 0D and 1D plume models, which are fast and require only a few observational input parameters, often only the plume height. A model’s output, however, depends also on the plume height data handling strategy (sampling rate, gap reconstruction methods and statistical treatment), especially in long-term eruptions with incomplete plume height records. Representing such an eruption, we used Eyjafjallajökull 2010 to test the sensitivity of six simple and two explicitly wind-affected plume models against 22 data handling strategies. Based on photogrammetric measurements, the wind deflection of the plume was determined and used to re-calibrate radar height data. The resulting data was then subjected to different data handling strategies, before being used as input for the plume models. The model results were compared to the erupted mass measured on the ground, allowing us to assess the prediction accuracy of each combination of data handling strategy and model. Combinations that provide highest prediction accuracies vary, depending on data coverage, eruptive strength, and fragmentation style. However, for this type of moderate to weak eruption, the most important factor was found to be the prevailing windspeed. When windspeeds exceed 20 m/s, most combinations of strategies and models provide predictions that underestimate the erupted mass by more than 40%. Under such conditions, the optimal choice of data handling strategy and plume model is of particularly relevance.The geo-referencing and photo analysis was conducted under the EU Framework 7 FutureVolc project (2012–2016). This work contributes to project MAXI-Plume, supported by the Icelandic Research Fund (Rannís), grant Nr. 206527-051. TD was supported by the IRF (Rannís) Postdoctoral project grant 206527–051.Pre-print (óritrýnt handrit

    Volcanic jets, plumes, and collapsing fountains: evidence from large-scale experiments, with particular emphasis on the entrainment rate

    Get PDF
    The source conditions of volcanic plumes and collapsing fountains are investigated by means of large-scale experiments. In the experiments, gas-particle jets issuing from a cylindrical conduit are forced into the atmosphere at different mass flow rates. Dense jets (high particle volumetric concentration, e.g., C 0 > 0.01) generate collapsing fountains, whose height scales with the squared exit velocity. This is consistent with Bernoulli's equation, which is a good approximation if air entrainment is negligible. In this case, kinetic energy is transformed into potential energy without any significant loss by friction with the atmosphere. The dense collapsing fountain, on hitting the ground, generates an intense shear flow similar to a pyroclastic density current. Dilute hot jets (low particle volumetric concentration, e.g., C 0 3). © 2014 Springer-Verlag Berlin Heidelberg

    An all silicon quantum computer

    Get PDF
    A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are Si-29 nuclear spins arranged as chains in a Si-28 (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques. Magnetic resonance force microscopy is used for readout. This proposal takes advantage of many of the successful aspects of solution NMR quantum computation, including ensemble measurement, RF control, and long decoherence times, but it allows for more qubits and improved initialization.Comment: ReVTeX 4, 5 pages, 2 figure

    REFIR- a multi-parameter system for near real-time estimates of plume-height and mass eruption rate during explosive eruptions

    Get PDF
    Meaningful forecasting of the atmospheric concentration and ground accumulation of volcanic ash during explosive eruptions requires detailed knowledge of the eruption source parameters. However, due to the large uncertainties in observations and limitations of current models used to make inferences from these, monitoring an ongoing eruption and quantifying the mass eruption rate in real-time is a considerable challenge. Within the EU supersite project “FutureVolc”, an integrated approach has been applied to develop a quasi-autonomous multi-parameter system, denoted “REFIR”, for monitoring volcanic eruptions in Iceland and assessing the eruption mass flow rate by inverting the plume height information and taking account of these uncertainties. REFIR has the capability to ingest and process streaming plume-height data provided by a multitude of ground based sensors, including C– and X-band radars and web-cam based plume height tracking systems. These observational data are used with a suite of plume models that also consider the current wind and other atmospheric conditions, providing statistically assessed best estimates of plume height and mass eruption rate. Provided instrumental data is available, near real-time estimates are obtained (the delay corresponding to the scan rate of data-providing instruments, presently of the order of minutes). Using the Hekla 2000, and Eyjafjallajökull 2010 eruptions in Iceland, the potential of REFIR is demonstrated and discussed through application to three scenarios. The system has been developed to provide maximum flexibility. A setup script assists the user in adapting to local conditions, allowing implementation of REFIR for any volcanic eruption site worldwide. REFIR is designed to be easily upgradable, allowing future extension of monitoring networks, learning from new events, and incorporation of new technologies and model improvements. This article gives an overview of the basic structure, models implemented, functionalities and the computational techniques of REFIR
    corecore