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Volcanic jets, plumes, and collapsing fountains: evidence
from large-scale experiments, with particular emphasis
on the entrainment rate
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Abstract The source conditions of volcanic plumes and col-
lapsing fountains are investigated by means of large-scale
experiments. In the experiments, gas-particle jets issuing from
a cylindrical conduit are forced into the atmosphere at differ-
ent mass flow rates. Dense jets (high particle volumetric
concentration, e.g., C0>0.01) generate collapsing fountains,
whose height scales with the squared exit velocity. This is
consistent with Bernoulli’s equation, which is a good approx-
imation if air entrainment is negligible. In this case, kinetic
energy is transformed into potential energy without any sig-
nificant loss by friction with the atmosphere. The dense col-
lapsing fountain, on hitting the ground, generates an intense
shear flow similar to a pyroclastic density current. Dilute hot
jets (low particle volumetric concentration, e.g., C0<0.01)
dissipate their initial kinetic energy at much smaller heights
than those predicted by Bernoulli’s equation. This is an indi-
cation that part of the total mechanical energy is lost by
friction with the atmosphere. Significant air entrainment

results in this case, leading to the formation of a buoyant
column (plume) from which particles settle similarly to pyro-
clastic fallout. The direct measurement of entrainment coeffi-
cient in the experiments suggests that dense collapsing foun-
tains form only when air entrainment is not significant. This is
a consequence of the large density difference between the jet
and the atmosphere. Cold dilute experiments result in an
entrainment coefficient of about 0.06, which is typical of pure
jets of fluid dynamics. Hot dilute experiments result in an
entrainment coefficient of about 0.11, which is typical of
thermally buoyant plumes. The entrainment coefficients ob-
tained by experiments were used as input data in numerical
simulations of fountains and plumes. A numerical model was
used to solve the classic top-hat system of governing equa-
tions, which averages the field variables (e.g., column velocity
and density) across the column. The maximum heights calcu-
lated with the model agree well with those observed experi-
mentally, showing that our entrainment coefficients are com-
patible with a top-hat model. Dimensional analysis of the
experimental data shows that a value of 3 for the source
densimetric Froude number characterizes the transition be-
tween dense collapsing fountains and dilute plumes. This
value delimits the source conditions (exit velocity, conduit
radius, and particle volumetric concentration) for pyroclastic
flow (<3) and fallout (>3).
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Introduction

In explosive volcanic eruptions, a gas-particle jet issues at
high velocity from the vent and forms an eruption column
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that can reach a height of several kilometers. Depending on
vent diameter, mass flow rate, particle volumetric concentra-
tion, and temperature, the column can collapse and form
pyroclastic density currents, or can become buoyant and
spread into the atmosphere, from where particles settle to the
ground and form pyroclastic fall deposits. The dynamics of
volcanic columns are fundamental for hazard assessment, and
various models have been developed in the past decades,
which are aimed at both constraining the eruptive regime
parameters (Wilson et al. 1980; Woods 1988, 2010; Woods
andCaulfield 1992; Dellino et al. 2010; Suzuki andKoyaguchi
2012) and modeling pyroclast dispersion (Costa et al. 2006;
Sulpizio et al. 2012) and deposition (Woods 1988, 2010).

Given the apparent analogy of the volcanic process with
flows issuing from a circular nozzle, fluid dynamics theory
describing jets and plumes has been used over the years as a
reference to develop models of eruptive columns (Woods
1988, 2010; Formenti et al. 2003; Carazzo et al. 2008).

In fluid dynamics, a pure jet is a fully turbulent flow issuing
from a source with a density equal to that of the surrounding
environment, and its ascent is driven by initial momentum. A
pure plume is a flow that is driven solely by the initial
buoyancy, which results from the density difference between
the source and the environment (Morton et al. 1956). A
buoyant jet is a flow in which both the initial momentum
and buoyancy play a role (Papanicolaou and List 1988),
whereas a negatively buoyant jet is a flow in which the source
fluid has a greater density than the surrounding (Turner 1966,
1986; Papanicolaou et al. 2008). Negatively buoyant jets
reach a maximum height then “collapse” and form a fountain
(McDougall 1981; Bloomfield and Kerr 2000; Carazzo et al.
2006, 2008, 2010).

The gas-particle flow issuing from a volcanic vent, because
of the high density of pyroclastic particles, invariably starts as
a negatively buoyant jet. During ascent, it can become buoy-
ant because of air entrainment and heating that cause a signif-
icant decrease in the gas-particle mixture density. A convec-
tive buoyant column is thus formed, from which particles
settle by simple fallout. The large-scale end member of this
phenomenon is known as a Plinian column. In contrast, when
air entrainment is insufficient, the jet remains denser than the
environment, and the flow collapses to form a pyroclastic
density current.

Notwithstanding the large variability of eruptive conditions
and regimes of explosive phenomena, which encompass both
dense and dilute columns, modeling of volcanic columns
(Wilson 1976; Wilson et al. 1980; Woods 1988) was based,
in the past, on Morton’s theory of dilute plumes (Morton et al.
1956). Later on, the model was modified by including the
thermal effects due to the temperature difference between the
jet fluid and the density-stratified atmosphere.

The model is described here with reference to the formu-
lation ofWoods (1988). It includes the conservation equations

of mass (Eq. 1), momentum (Eq. 2), and energy (Eq. 3), which
are defined by means of the top-hat model. In the top-hat
approximation, the fluid dynamic properties take one set of
averaged values across the jet at any given height and another
set of values for the ambient fluid; in this way, the flow
parameters (velocity, density, radius, etc.) change only along
the vertical direction z while remaining constant in the other
directions. The conservation equations are as follows:

d ρ jUr2
� �

dz
¼ 2parU ε ð1Þ

d ρ jU
2r2

� �

dz
¼ r2g ρa−ρ j

� �
ð2Þ

d ρ jUr2 cp; jT j þ U 2

2
þ gz

� �� �

dz
¼ 2U εrρa cP;aTa þ gz

� �

ð3Þ

where U is vertical jet velocity, r is column radius, ρ is bulk
density, g is gravitational acceleration, cP is the specific heat at
constant pressure, T is temperature, z is the vertical coordinate,
and the subscripts a and j refer to the surrounding atmosphere
and jet, respectively. The quantity Uε is the so-called entrain-
ment velocity, which is defined as Uε=εU (Morton et al.
1956), where ε is the entrainment coefficient.

The model was developed on the basis of the following
assumptions: (1) the flow can be considered steady; (2) no
pressure gradient exists between the jet fluid, which is as-
sumed to behave as a perfect gas, and the surrounding atmo-
sphere; (3) self-similarity of the field variables is respected,
i.e., the profiles of mean vertical velocity and mean buoyancy
force in the horizontal section of the flow have similar forms at
any height (Morton et al. 1956); (4) particles can be consid-
ered as passive tracers and do not influence significantly fluid
properties, e.g., density (Boussinesq approximation); (5) there
is thermal and mechanical equilibrium between particles and
jet fluid, which is a good approximation for fine particles with
a large specific surface area and efficient heat exchange with
the gas phase (Sparks et al. 1997); (6) all particles remain in
the column, i.e., there is no particle segregation and deposi-
tion; (7) atmospheric effects, such as humidity (Woods 1993)
and wind (Degruyter and Bonadonna 2013), are not accounted
for.

Assumptions (4) and (5) lead to the definition of column
characteristics and environment at any height by the “average”
bulk macroscopic properties of velocity, density, and
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temperature over the column cross-section (see Table 1 for the
symbol list).

Assumption (2) leads to the equation of state for the density
of gas phase in the jet:

ρg ¼
P

RT
ð4Þ

where P is fluid pressure, which is set equal to atmospheric
value at any height by assumption (2), and R is the specific gas
constant of gas phase in the eruptive flow, usually consisting
of a multispecies gas mixture (e.g. CO2, water vapor, etc.).
Assumption (2) is not valid for eruptive jets issuing from the
conduit with an overpressure with respect to the surrounding
atmosphere (Ogden et al. 2008; Koyaguchi et al. 2010;
Saffaraval et al. 2012). This can be the case for
phreatomagmatic eruptions that generate eruptive clouds
expanding radially above the vent and producing base surges
(Koyaguchi and Woods 1996). This condition has been
reproduced experimentally by the apparatus described in the
following section (Dellino et al. 2010; Dioguardi et al. 2013),
but the present paper deals only with pressure-balanced erup-
tive columns.

Assumption (5) leads to the constitutive equation of the
gas-particle mixture density ρj:

1

ρ j
¼ 1−n

ρp
þ n

ρg
ð5Þ

where ρp is the density of solid particles, and n is the gas mass
fraction.

Finally, assumption (6) leads to the equation for the con-
servation of solid particle mass fraction 1−n:

ρ jUr2 1−nð Þ ¼ ρ j0U 0r
2
0 1−n0ð Þ ð6Þ

where the subscript 0 refers to the vent exit conditions. It is
assumed that there is no particle fallout from the column,
although a formulation was developed to account for this
process (Woods and Bursik 1991; Woods 2010).

From Eq. 6, it follows that the gas mass fraction n increases
during column ascent, thus affecting the mixture specific heat
at constant pressure cP,j. A constitutive relationship linking the
specific heat to the gas mass fraction is therefore required:

cP; j ¼ cP;a þ cP; j0−cP;a
� � 1−n

1−n0
ð7Þ

where cP,a is the specific heat at constant pressure of the
atmosphere.

Table 1 Symbol notation

Symbol Description Units

Ainflow Inflow surface area m2

C Particle volumetric concentration –

cP Specific heat at constant pressure J kg−1 K−1

D Conduit diameter m

d50 Particle median grain size mm

Fr0’ Densimetric Froude number –

g Gravitational acceleration m s−2

g’ Reduced gravity m s−2

H Height of the collapse of natural column km

m Mass of pyroclastic material kg

MER Mass eruption rate kg s−1

n Gas mass fraction –

P Pressure Pa

PMFR Particle mass flow rate kg s−1

r Jet radius m

R Specific gas constant J kg−1 K−1

Ri Richardson number –

SME Specific mechanical energy J kg−1

T Temperature K

TMFR Total mass flow rate kg s−1

U Vertical velocity m s−1

Uε Entrainment velocity m s−1

V Volume of gas m3

z Vertical coordinate m

zmax Calculated maximum column height
with the Bernoulli equation

m

zmax,an Calculated maximum column height
with the analytical solution

m

zmax,num Calculated maximum column height
with the numerical simulation

m

zobs Observed maximum column height m

zss Steady-state height m

Γ1 Regime parameter of Degruyter and
Bonadonna (2013)

–

ΔP Initial gas overpressure Pa

ΔVFR Increase of volume flow rate m3 s−1

ε Entrainment coefficient –

ρ Density kg m−3

ϕ Grain size phi

Ω Vorticity factor s−1

Subscripts

0 Source conditions

a Surrounding atmosphere

c Centerline in a Gaussian profile velocity

g Gas

j Jet

p Solid particles
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Finally, as the eruptive mixture entrains air from the sur-
rounding atmosphere, the specific gas constant also varies as a
function of the gas mass fraction:

R ¼ Ra þ R0−Rað Þ1−n
n

n0
1−n0

ð8Þ

The entrainment velocity plays amajor role in the evolution
and spread of the flow during ascent. The concept of
entrainment velocity stems from the original assumption of
Morton et al. (1956), which has been successively verified
experimentally, that the rate of lateral spread of the plume is
proportional to the ascent velocity along plume axis; this
assumption can be applied as long as the self-similarity con-
dition is verified (assumption (3)). The top-hat approximation,
from which the model discussed above derives, is a simplifi-
cation of the Gaussian one, in which the radial profile of
velocity is assumed to follow a Gaussian function, with Uc

being the centerline velocity. This means that the centerline
velocity Uc at any height is proportional to the entrainment
velocity by the relation Uε=εUc. The entrainment coefficient
needs to be determined experimentally (e.g., Turner 1986) or
theoretically (e.g., Carazzo et al. 2006, 2010). Here, we
expand the concept of entrainment velocity and entrainment
coefficient, as in the present paper they are calculated directly
from experiments. A summary of the concepts and definitions
of Turner (1986) is as follows: “The entrainment velocity is
the rate, Uε=εUc, at which external fluid flows into the turbu-
lent flow across its boundary”. As previously explained, in the
top-hat model, the velocity and other physical quantities are
assumed to be constant across the jet and zero outside (Morton
et al. 1956), thus leading to Uε=εU. Morton et al. (1956)
found a value of ε=0.132 in the top-hat model, and ε=0.093
for the Gaussian profile. See Turner (1986) for further details
on the conversions between quantities of the top-hat model
and those of the Gaussian model.

In the literature, the entrainment coefficient in the
top-hat model is approximately equal to 0.06 for pure
jets, whereas it is about 0.1 for pure plumes (Woods
1988, 2010; Bloomfield and Kerr 2000; Kaye and Hunt
2006; Carazzo et al. 2008, 2010; Papanicolaou et al.
2008). Given that the model of volcanic columns is
used to follow the evolution in both the “gas-thrust”
region, where buoyancy is negative, and in the much
more extensive “convective buoyant” region, where
buoyancy is positive, an average entrainment coefficient
of 0.09 has been adopted in the literature (Woods
1988). More recently, variable entrainment coefficient
laws have been introduced (Papanicolaou et al. 2008;
Carazzo et al. 2008). These laws link the entrainment
coefficient to the source densimetric Froude number
Fr0’, a dimensionless fluid dynamic parameter that

controls the regime of flows issuing from circular noz-
zles (Bloomfield and Kerr 2000; Kaye and Hunt 2006).
Fr0’:

Fr0′ ¼ U 0ffiffiffiffiffiffiffiffiffiffi
g0′r0

p ¼ 1ffiffiffiffiffi
Ri

p ð9Þ

where Ri is the local densimetric Richardson number (Carazzo
et al. 2008; Suzuki and Koyaguchi 2012; Degruyter and
Bonadonna 2013), and g0’ is the reduced gravity at the source,
defined as follows:

g′0 ¼ g
ρ j0−ρa
ρa

ð10Þ

From 2D and 3D numerical simulations of eruption clouds,
Suzuki et al. (2005) evaluated the entrainment rate of different
eruptive scenarios (jets and collapsing clouds). Although they
warn that the evaluation of the entrainment rate is significantly
affected by the grid resolution, they found entrainment coef-
ficients of 0.1 for buoyant columns and 0.07 (in the gas-thrust
region) for negatively buoyant jets that evolve into collapsing
columns. Here, we will show, by means of large-scale exper-
iments and numerical simulations, that a collapsing column
only forms when the entrainment rate ε is approximately equal
to 0.

Morton-based models of the kind described above have
been frequently applied to the eruption columns of past
Plinian eruptions, but recent research in the fluid dynamics
of negatively buoyant jets (Carazzo et al. 2006, 2008, 2010;
Kaye and Hunt 2006; Papanicolaou et al. 2008; Suzuki and
Koyaguchi 2012), corroborated by evidence from actual erup-
tions (Formenti et al. 2003; Carazzo et al. 2008), casts some
doubts on their general validity, especially for the transitional
conditions between Plinian plumes and collapsing columns. It
seems that models based on Morton’s theory work well for
dilute plumes, where the seven assumptions described above
seemmore appropriate, but they do not work as well for dense
collapsing columns forming pyroclastic density currents.

This issue could be attributed to the substantially lower
entrainment coefficient that is needed for modeling dense
negatively buoyant jets adequately, which is much less than
those of both plumes (~0.1) and pure jets (~0.06). A reduction
in the air entrainment leads to a less dilution of the column
and, in turn, to greater heights reached due to the initial kinetic
energy.

A precise definition of the entrainment coefficient is there-
fore of primary importance in the modeling of volcanic erup-
tive columns, as well as for hazard assessment purposes, as it
influences the formation of fallout and pyroclastic density
currents. Unfortunately, direct measurements of this quantity
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are not practical for real eruptions. In order to cover this gap,
we carried out large-scale experiments, specifically tailored
for the volcanic case, with the aim of both comparing the
characteristics of volcanic columns with those emerging from
the recent fluid dynamics literature on jets and to directly
measure the entrainment coefficient. By means of the exper-
imental measurements, we compared the entrainment coeffi-
cients of dense jets generating collapsing columns with those
of dilute gas-particle mixtures (both cold pure jets and hot
plumes) generating pyroclastic fallout. Next, the experiments
were simulated via a Fortran 90 numerical code of the model
Eqs. 1–8, and numerical results were compared with experi-
mental data. Finally, a threshold value of the initial
densimetric Froude number leading to collapsing fountains
vs. dilute plumes was obtained. This allows the construction
of a diagram defining the stability fields of pyroclastic flow vs.
fallout as a function of source conditions (exit velocity, con-
duit radius, and particle volumetric concentration).

Large-scale experiments: setup and description

Large-scale experiments that generate eruptive columns pro-
ducing plumes or collapsing fountains were carried out with
the methods described by Dellino et al. (2007, 2010). Further

experimental runs have been carried out, and are included
here, to increase the range of eruptive parameters already
investigated in the previous papers.

The experiment design (Fig. 1) consists of a conduit that is
loaded with up to 500 kg of samples of pyroclastic deposits
from the Vesuvius, Etna, and Phlegrean Fields (southern
Italy). The samples of Vesuvius come from pyroclastic flow
deposits of the Pomici di Mercato eruption (8.9 ky BP, Mele
et al. 2011). Themedian grain size is 0.65ϕ (0.637mm) with a
sorting value of 2.5 ϕ. Particle densities, as obtained by
picnometer measurements , range from 1,458 to
1,553 kg m−3. The samples of Campi Flegrei come from
pyroclastic flow deposits of the Astroni eruption (Unit 6,
4.1–3.8 ky BP, Isaia et al. 2004). The median grain size is
3.98 ϕ (0.063 mm) with a sorting value of 1.58 ϕ. Particle
density is 2,408 kg m−3, a value close to the dense rock
equivalent as the particles are very fine, thus lacking in vesi-
cles. The samples of Etna come from scoria deposits of the
2004–2005 eruption. The median grain size is −0.6 ϕ
(1.48 mm) with a sorting value of about 1 ϕ; particle density
is 1,045 kg m−3. The experiment setup is modular and allows
various parameters to be changed in order to replicate different
eruptive regimes. The experimental apparatus, in its larger
configuration, consists of up to two interconnected packs of
16 gas bottles (called the gas storage compartment, Fig. 1a); a

b c

base plate

hub

a

Fig. 1 Experiment design and
main apparatus, after Dellino et al.
(2007). a Experimental design; b
general photograph of the pit
where the second hub, solenoid
valves, and the conduit are
located. The base plate of the
conduit is also shown. c General
view of the conduit with the
mounted pressure sensors and the
additional 1-m long sector
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high-pressure section consisting of up to 18 steel-reinforced
rubber hoses each 30 m long, with 8-mm internal diameter; a
rapid-compression section consisting of up to 18 steel-
reinforced rubber hoses each 1.5 m long, with 8-mm internal
diameter; and a low-pressure section consisting of a steel
conduit. Two conduits were used: a small one with a diameter
of 0.3 m and a length of 1 m, which can be extended to 2 m by
mounting an additional 1-m long section. A larger conduit
consisted of a stack of sectors, each 0.55 m high with a
diameter of 0.6 m, allowing the conduit length to range from
0.55 to 2.2 m and up to 3.2 m with the addition of another 1-m
long section.

Experiments were performed both at ambient temperature
and with the pyroclastic material heated up to 300 °C. For the
gas phase, we used nitrogen in order to avoid the oxidation of
the metallic parts of the setup (Dellino et al. 2007). The gas
bottles were coupled to the high-pressure stage via two valves
and a hub, in line with manometers that control the pressure in
both the reservoir and the high-pressure section. High-speed
solenoid valves connected the high-pressure section via a
second hub to the rapid-compression section (Fig. 1b), where
the driving pressure of the system is monitored by a transduc-
er. The pressure transducer is mounted at the exit of the second
hub after the solenoid valves. Finally, the short hoses are
connected to 18 blow nozzles in the base plate of the low-
pressure section (Fig. 1b). The nozzles cover up to 2 % of the
total area of the base plate. The pyroclastic material was
placed into the conduit (Fig. 1c) and rested directly on the
base plate. The experiment was fully computerized: the open-
ing of each solenoid, the trigger signal to the data acquisition
systems, the start-up and shut down of high-speed cameras,
and optical and acoustic warning signals were controlled with
a reproducibility of 200 ms. A 24-channel data recording
system was used at a resolution of 16 bit and at 10-kHz
sampling rate, capturing the trigger signal from the control
computer (giving the opening time of the solenoids), the
driving pressure, and the signals from the sensor network
recording flow parameters. The latter includes pressure sen-
sors inside the conduit, pressure sensors for monitoring the
passage of the pyroclastic flow, and electrostatic field sensors
measuring the change in the electrostatic field around the
conduit due to the fast acceleration/separation of pyroclastic
particles inside the eruptive mixture. Four digital video cam-
eras, positioned at different distances and viewing angles,
were used to capture video sequences of the experiments.
Thermal cameras were used to monitor the evolution of hot
experiments.

The experiment starts by opening the valves that connect
the gas storage compartment to the high-pressure section. By
means of manometers, the pressure of the gas in the high-
pressure section is controlled and regulated up to the desired
operational value. When this value is reached, the valves are
closed, and a charge of up to 28 L of compressed gas is loaded

into the high-pressure section. After closure of the valves, the
countdown routine of the control computer is started, the
acquisition computers start recording signals from the sensors,
and the cameras start recording the video footage. Upon firing
of the trigger, the solenoid valves open, and a gas flow is
established over 1 ms between the high-pressure section and
the compression section, which results in the mechanical
coupling of the pressurized gas to the pyroclastic material
filling the conduit. The pressure quickly reaches a peak value
in the compression section, and it remains quite constant for a
brief period of time before a slow decompression phase is
recorded (Dellino et al. 2010). In this phase, the pyroclastic
material starts moving as a granular mass while it is acceler-
ated inside the conduit, then it mixes with gas and overlying
air, and eventually is expelled as a two-phase mixture out of
the conduit. The driving pressure history, which is recorded by
a transducer placed between the gas reservoir and the nozzles
(Fig. 1b), was measured at a 10-kHz sampling rate by an
absolute pressure sensor, which has a certified relative error
of ±0.3 %. Transducers placed within the conduit perpendic-
ular to flow direction allowed measurement of gas pressure
during the passage of the gas-particle mixture along the con-
duit (see Dellino et al. 2010). Gas pressure was recorded at a
1-kHz sampling rate by relative pressure sensors, which have
a certified relative error of ±0.25 %. Depending on the balance
between the operational pressure of the compressed gas vol-
ume in the high-pressure section and the mass of pyroclastic
material, different eruptive processes were replicated.

The ratioΔPV/m, whereΔP is the initial gas overpressure
(i.e., pressure>atmospheric) in the high-pressure section, V is
the volume of the gas charge in the high-pressure section, and
m is the mass of pyroclastic material, accounts for the specific
mechanical energy (SME) of the system (Dellino et al. 2007).
It represents the gas potential to move the mass of pyroclastic
material. When SME is lower than 1.5 kJ kg−1, the “eruptive”
flow evolves as a dense (high particle concentration) column.
In this case, a massive collapse of a substantial part of the gas-
particle column occurs (Fig. 3), and on impact with the
ground, the collapsing material produces a shear flow, similar
to a pyroclastic flow. When the SME is higher than about
2.6 kJ kg−1, the eruptive flow evolves as a low-density (low
particle concentration) vertical column (Figs. 4, 5), nomassive
collapse occurs, and the pyroclastic particles settle individu-
ally from the columnmargin, similar to fallout from a volcanic
plume.

For the present paper, detailed measurements of velocity
and geometric characteristics of the eruptive columns were
obtained from the analysis and post-processing of digital
videos from the cameras that recorded flow evolution from
different distances and viewing angles.

The high-definition video format (720×1,280 pixels)
allowed discretization of the scene at the conduit exit at a
scale less than 0.01 m pixel−1, so the precision of spatial
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measurements was about ±0.005 m. The recording rate of
50 frames s−1 resulted in a typical translation distance of the
gas-particle mixture at a conduit exit of about 0.5 m between
two successive frames (depending on exit velocity). The rel-
ative error on distance measurements between two successive
frames is therefore about ±1 %. The error on the time interval
between two successive frames is linked to the precision of the
internal digital clock of video cameras and is insignificant
compared to distance error. Overall, the relative error of ve-
locity measurements is about ±1 %.

Thermal cameras were used to monitor the formation of
buoyant columns (plumes) that occurred for the low particle
concentration, high temperature runs (Fig. 2). By means of
this setup, the maximum height of the column for collapsing
fountains, and the maximum height where initial momentum
(kinetic energy) was consumed (height of transition between
initial momentum driven flow and thermally buoyant flow),
were measured.

The flow evolution inside the conduit, and up to conduit
exit, was monitored by a sensor network (for the complete
dataset see Dellino et al. 2010; Dioguardi et al. 2013), which
allowed selection of runs for which the gas-particle mixture
issued from the conduit at a pressure equal to that of the
surrounding atmosphere (to satisfy assumption (2) of the
“Introduction” section). The particle mass flow rate PMFR0

at the conduit exit was calculated by knowing the total mass of
particles and the duration of gas-particle flow exiting the
conduit. The particle mass flow rate was assumed to be steady
during the experiment, since the gas flow rate entering the
conduit, as recorded by a high precision high frequency pres-
sure transducer, was found to be constant.

By knowing the particle mass flow rate, exit velocity, and
conduit diameter and assuming that gas and particle velocities
were in equilibrium (reasonable for fine particles, assumption
(5) of the “Introduction” section), the source particle volumet-
ric concentration can be calculated from

C0 ¼ PMFR0

πr20U0ρp
ð11Þ

where r0 is the conduit radius, and U0 is the gas-particle
mixture exit velocity. From the conservation of volume, the
gas concentration is 1-C0, the gas-particle mixture density at
conduit exit ρj0 is given by

ρ j0 ¼ ρpC0 þ ρg 1−C0ð Þ ð12Þ

and the total mass flow rate TMFR0 is given by

TMFR0 ¼ U0ρ j0πr
2
0 ð13Þ

In the experiments, samples from pyroclastic deposits of
the Mercato eruptions at Vesuvius (Dellino et al. 2007, 2010)
were mostly used. The grain size distribution is broad with a
median size d50 of about 1 mm. For assessing the influence of
grain size, also some samples from the Etna scoria (d50=
1.48 mm) and Phlegrean Fields’ fine ash (d50=0.063 mm)
were used (Table 2).

The particle loads of experimental runs ranged between 10
to 500 kg, resulting in particle volumetric concentrations, C0,
at conduit exit ranging from 0.002 to 0.16 and exit velocities,
U0, in the range 5 to 35 m s−1 and total mass flow rates,
TMFR0, in the range 5 to 338 kg s−1. The Reynolds number
was in the order of 106, meaning that fully turbulent flows
were produced at the conduit exit. These conditions ensure
that the experiments are dynamically similar to real eruption
columns (Dellino et al. 2010). A total of 26 experimental runs
form the dataset used in this paper, which is shown in Table 2.

a

b
Fig. 2 Thermal images of a high temperature run forming a buoyant
plume. Temperatures are in °C. a Formation of the eruptive column at
conduit exit. b Spread of the column and thermal convection
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The different eruption regimes produced in the experiments
can be grouped into twomain categories: (1) experiments with
higher initial particle volumetric concentrations (and higher
mass flow rates), which produced dense columns (Fig. 3a) that
collapsed to the ground and generated intense shear currents
(Fig. 3b), similar to volcanic pyroclastic density currents; (2)
experiments with lower particle volumetric concentrations
that generated expanded columns (both hot, Fig. 4a, b and
cold, Fig. 5a, b), with particles settling individually from their
margins, similarly to volcanic pyroclastic fallout.

The experiments lasted for few seconds, and the gas-
particle flow at the conduit exit lasted longer than the time
needed for the column to reach its maximum height due to the
initial kinetic energy. Therefore, the flow can be considered
steady (assumption (1) of the “Introduction” section), as stated
in Dioguardi et al. (2013). Some variation of particle flow rate
at the conduit exit probably occurred during the final stage of
flow, but this “perturbation” at the source did not influence the
dynamics higher up in the column (at a distance greater than
10D, where D is the conduit diameter; Fischer et al. 1979;
Turner 1986).

Experiment results and analysis

The two groups of experiments described in the previous
section (generating dense and expanded columns) are visually
very different, and the difference can be evaluated quantita-
tively by assessing the conservation of mechanical energy
from conduit exit to maximum height. Since pressure is
equivalent to energy per unit volume, this can be done by

verifying the conservation of total pressure at any height, as
prescribed by Bernoulli’s equation:

1

2
ρ j0U

2
0 þ ρ j0gz ¼ const ð14Þ

Assuming constant density, Eq. 15 leads to

zmax ¼ U2
0

2g
ð15Þ

The relationship between the observed height zobs and that
calculated by assuming energy conservation zmax (Eq. 15)
shows the different behaviors between the two groups of
experiments (Fig. 6). For group 1, (diamonds in Fig. 6) there
is a good agreement between the calculated and observed
heights, with the data points lying on the equality line (solid
line), which means that the total pressure conservation pre-
scribed by Bernoulli’s equation is satisfied. This also means
that in the experiments producing collapsing columns and
pyroclastic density currents, mixture density is conserved
throughout the flow, and that the initial kinetic energy is
completely converted into potential energy. Therefore, for
the dense columns, there is no apparent energy loss by friction
with the surrounding fluid and by air entrainment. This is
confirmed by solving Eqs. 1 to 6 in the case of no entrainment,
i.e., Uε=εU=0: the system of equations simplifies and, upon
assuming a constant atmospheric pressure in the vertical di-
rection (which is a good approximation for our experiments)

1 m 1 m

Fig. 3 Images of an experimental
dense column. a Formation of the
dense column at conduit exit. b
Collapse of the dense column
with the formation of a density
current
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and again a constant density, the equations can be solved
analytically. The analytical solution for the mixture velocity is

U ¼ �
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ρg−ρ j

� �

ρ j
zþ U 2

0

2

vuut ð16Þ

With the boundary condition U=0 at z=zmax,an, the maxi-
mum height in the case of zero entrainment is

zmax;an ¼ U 2
0

2g
ρ j−ρg
ρ j

ð17Þ

The results of the analytical solution are nearly identical to
those obtained with Bernoulli’s approximation for the dense
experiments generating collapse (the average difference is
about 2 %, see Table 2). The small difference is due to the
ratio (ρj−ρg)/ρj, which in Bernoulli’s solution (15) is not taken

into account. For the dense column experiments, this ratio is
always slightly larger than 1, as the mixture density ρj is 2–3
orders of magnitude larger than the gas density ρg.

The behavior of group 2 experiments (square symbols in
Fig. 6) is much different. The observed height reached before
the onset of buoyancy is much smaller than that prescribed by
Bernoulli’s equation, and the data points are far from the
equality line, especially for the higher velocities. This implies
that there is a significant energy loss by friction and air
entrainment, which is also apparent by the much more ex-
panded form of the column as compared to group 1 experi-
ments (see Figs. 4 and 5).We note that both hot dilute columns
(Fig. 4) and cold dilute columns (Fig. 5) spread significantly
during ascent compared to dense columns. For the cold dilute
columns, there is no collapse but simply fallout from column
margin, which means that even when thermal buoyancy is not
active, the dilution effect of the spreading column precludes
the formation of a dense collapsing fountain.

The densimetric Froude numbers (Eq. 9) calculated for
group 1 and group 2 experiments are quite different
(Table 2), which allows dense columns generating pyroclastic

1 m 1 m

Fig. 4 Images of an experimental
dilute hot column. a Formation of
the dilute hot column at conduit
exit. b Spread of the dilute hot
column and formation of the
plume
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density currents to be discriminated from dilute columns
generating fallout. By analogy with the recent literature on
negatively buoyant jets (e.g., Kaye and Hunt 2006), the data
from our experiments are plotted on a diagram of normalized
height (ratio between the final steady-state height zss and
conduit radius) vs. the initial densimetric Froude number
(Fig. 7). The value of zss is calculated as the ratio of the
observed maximum height zobs and 1.43, according to the
literature on negatively buoyant jets (Turner 1966; Kaye and
Hunt 2006). For collapsing columns (both hot and cold), the
relationship between the Froude number (which is always less
than 3) and the normalized height is linear, with a very good
correlation (r=0.99). Dilute columns (both hot and cold)

leading to pyroclastic fallout (group 2 experiments) have
Froude numbers greater than about 3, and data show a linear
relationship with a very good correlation (r=0.99) and amuch
lower slope (2.9) than that of group 1 (22.4). Figure 7 shows
the clear separation between the two groups of experiments. It
is worth noting that Kaye and Hunt (2006) discriminate weak
fountains from forced jets based exactly on the same threshold
value Fr0’; and for weak fountains, they found that the en-
trainment rates are much less than those of pure jets and
plumes. The slope (2.9) of the linear relationship found for
our “dilute” experiments (group 2) is similar to that (2.46)
found for forced jets by Kaye and Hunt (2006). The value of
the intercept in our case (about 5) is larger than that reported in
Kaye and Hunt (2006) (about 0.4). This difference is likely to
be attributed to the different ranges of Fr0’ investigated: for
our group 2 experiments, Fr0’ ranges between 3 and 11, while
in Kaye and Hunt (2006), the maximum Froude number was
about 200. The relationship between the initial densimetric
Froude number and the normalized height for the “dense”
experiments (group 1, Fr0’<3) is linear in our case. This is
different from the data reported by Kaye and Hunt (2006),
which suggest a quadratic relationship. However, other au-
thors (Lin and Armfield 2000) maintain a linear relationship.
We note that our experiments at low initial densimetric Froude
number (collapsing columns) have a reduced gravity that is
significantly greater than that used in engineering experiments
(e.g., Carazzo et al. 2006, 2010; Papanicolaou et al. 2008) and
simulations (e.g. Lin and Armfield 2000). It is likely that this
can cause the difference in the coefficients of the relationship
with the normalized height.

0
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)

zobs (m)

Fig. 6 Diagram of the maximum height calculated with Bernoulli’s
equation (zmax) vs. the observed maximum column height resulting from
the initial kinetic energy (zobs). Squares represent dilute columns,
diamonds represent dense columns. The 1:1 equality line is shown

1 m 1 m

Fig. 5 Images of an experimental
dilute cold column. a Formation
of the dilute cold column at
conduit exit. b Spread of the
dilute cold column
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To summarize, our experiments suggest that the entrain-
ment of external air seems to be insignificant in the case of
collapsing columns forming pyroclastic density currents,
whereas it is important for dilute expanded columns (both
cold and hot) producing pyroclastic fallout.

To further corroborate this result, we measured the entrain-
ment coefficient by means of a quantitative analysis of exper-
iment video recordings.

As already stated in the “Introduction” section, the entrain-
ment coefficient is defined as the ratio between the entrain-
ment velocity Uε and the ascent velocity U, which in the top-
hat approximation coincides with the centerline velocity Uc.
The entrainment velocity was calculated by dividing the in-
crease of volume flow rate, ΔVFR, by the surface area of the
boundary of air inflow Ainflow:

U ε ¼ ΔVFR

Ainf low
¼ Uπr2ð Þz1

2πrz2 z2−z1ð Þ ð18Þ

where z1 and z2 are two successive heights. The entrainment
coefficient was calculated as the ratio of entrainment velocity
and vertical velocity at z2.

The measurements were made by analyzing video of the
experiments, after the column had reached a height of about
10D. Velocity was calculated as the average of five successive
frames, and the two successive heights were taken at a dis-
tance of at least 0.5 m, to minimize sampling error. Results are
reported in Table 2.

In Fig. 8, two examples of entrainment velocity measure-
ments are displayed, one for dense fountains (Fig. 8a) and one
for hot dilute plumes (Fig. 8b); the difference between the two
cases is quite marked, as the spreading rate of the dilute
column is much greater than that of the dense column.

The entrainment coefficient of collapsing columns (group
1) is not significant, as expected. In fact, it ranges between
0.0007 and −0.0007 (Fig. 8a), the deviation from zero being
within the experimental error of measurements (in the range of
1 %, see Dellino et al. 2007). For cold dilute columns (cold
runs of group 2), which can be considered similar to pure jets,
the average entrainment coefficient was about 0.06, which is
quite consistent with data from fluid dynamic engineering
(Bloomfield and Kerr 2000; Kaye and Hunt 2006; Carazzo
et al. 2008, 2010; Papanicolaou et al. 2008). The entrainment
coefficient of hot dilute columns (hot runs of group 2) gener-
ating buoyant columns is on average about 0.11 (Fig. 8b),
which is consistent with data from plumes reported in the fluid
dynamics and volcanological literature (Woods 1988; Kaye
and Hunt 2006; Carazzo et al. 2008, 2010).

Numerical simulation of experiments

In order to verify the compatibility of our experimental mea-
surements of the entrainment coefficient with the top-hat
model illustrated in the “Introduction” section, the system of
Eqs. 1–8 was solved with a numerical code written in Fortran
90. The code uses the 4th order Runge-Kutta method of

y = 21.73x - 3.34
r = 0.99 y = 2.84x + 4.87

r = 0.98
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Fig. 7 Diagram of the normalized height (zss/r0) vs. the initial
densimetric Froude number (Fr0’). Squares represent dilute columns,
diamonds represent dense columns. The least square lines of both dilute
and dense columns are shown, together with the correlation coefficients,
r, and the equation of the regression lines

z2

z1

rz

rz

z2

z1

rz

rz

a b

1 m

1 m

Fig. 8 Measurement of the parameters needed for the calculation of the
entrainment velocity Uε. a Dense fountain. b Hot dilute column. The two
heights z1 and z2 and the jet radius as a function of the height rz are
displayed
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integration of ordinary differential equations with a constant
step-size (Press et al. 1996). The boundary conditions needed
for the simulation of each experiment are the initial column
radius r0, fluid velocity U0, fluid temperature T0, and particle
volumetric concentration C0 at the conduit exit (see Table 2).
The thermodynamic quantities needed for the solution of
Eqs. 3, 4, 7, and 8, are listed in Table 3. Atmospheric temper-
ature, Ta, is kept constant at 25 °C (298 K), the specific gas
constant Ra is 287.05 J kg−1 K−1, and the specific heat at
constant pressure cP,a is 1,005 J kg−1 K−1. For the gas
(nitrogen), the temperature is by default equal to the source
fluid temperature T0, the specific gas constant R0 is equal to
271.75 J kg−1 K−1, and the specific heat at constant pressure
cP,g is equal to 1,042 J kg−1 K−1. In order to calculate the
source specific heat at a constant pressure of the jet bulk
mixture cP,j0, the specific heat of the solid particles cP,s is
necessary. We chose a value of cP,s=1,617 J kg−1 K−1 for
consistency with other authors (Woods 1988; Formenti et al.
2003; Suzuki and Koyaguchi 2009).

The source specific heat at constant pressure of the jet bulk
mixture cP,j0 is obtained as a weighted average between the
gas and the solid phases:

cP; j0 ¼
1−C0ð Þρg0cP;g0 þ C0ρpcP;s

1−C0ð Þρg0 þ C0ρp
ð19Þ

As output, the code provides the vertical profiles of column
velocity, radius, bulk density, and temperature, together with
atmospheric temperature, density, and particle volumetric
concentration.

For the entrainment coefficient, ε, which is crucial for the
evolution of the eruption column, we used the values mea-
sured by experiments (Table 2) as model inputs to check
whether the numerical simulations produced results, i.e., ve-
locity and maximum height, consistent with experimental
data. To demonstrate that the numerical simulations replicate
the experimental flow evolution, Fig. 9a shows model vertical
profiles of column radius (solid line) and velocity (dashed
line) obtained using input data from experiment 3 (Table 2)

as an example of a collapsing column. As the vertical velocity
decreases with increasing height (due to the strong negative
buoyancy), the column radius increases due to the conserva-
tion of volume. At the height zmax,num, the velocity goes to 0:
this is the height at which kinetic energy is consumed and the
column stops ascending. The zmax,num value is similar to the
experimental value zobs (Table 2), which implies that simula-
tions with no entrainment replicate well the behavior of the
collapsing experimental columns. We note that after the col-
umn stops ascending, collapse occurs during the experiments,
whereas the numerical simulation calculates an infinite radius
at the maximum height, in order to satisfy the conservation of
mass flow when the velocity drops to zero (Eq. 1). This is a
well-known limitation of columnmodels based on theMorton
et al. (1956) theory, but it does not influence the calculation
until the column reaches its maximum height.

In Fig. 9b, the numerical simulation of the dilute column of
experiment 24 (Table 2) illustrates the differences from the
collapsing column of Fig. 9a. In particular, the rate of increase
of column radius with increasing height is much larger for the
dilute column than for the dense fountain, as there is the
additional contribution of air entrainment, which in this case
results from an entrainment coefficient of 0.12. This is in
agreement with the experimental measurements and observa-
tions (Fig. 8). The velocity of this plume never falls to 0, as at
the height zmax,num, the jet reaches the condition of buoyancy,
i.e., the column bulk density becomes less than that of the
atmosphere (Fig. 9c). In contrast, the buoyancy condition was
never reached in the case of collapsing fountains, due to the
much higher source density and to the lack of turbulent mixing
with atmosphere. The height at which the model plume den-
sity equals that of the atmosphere is in good agreement with
that measured in the experiment (Table 2). This means that, by
using the experimentally measured entrainment coefficients in
the model, the numerical simulation satisfactorily replicates
the experimental plume evolution with height.

In the dilute experiments carried out at ambient tempera-
ture (runs 20, 21, and 22 of Table 2), which never achieved
buoyant conditions, the measured entrainment coefficient is
about 0.06 and the particle volumetric concentration is quite
low (C0<0.01). In these cases, zmax,num is taken as the height at
which U=0, as in the case of collapsing fountains. The model
correctly replicates the cold dilute runs if the experimentally
measured entrainment coefficient of 0.06 is used.

The case of dilute cold experiments deserves some addi-
tional comment that can provide insights into the interpreta-
tion of volcanic jets. The entrainment coefficient of 0.06 for
cold dilute experiments is lower than that of thermally buoy-
ant plumes, but is consistent to those reported for pure jets in
the fluid dynamics literature (Turner 1986; Kaye and Hunt
2006; Carazzo et al. 2008).

This means that in our dilute hot experiments, as with real
volcanic plumes, the thermal effect is of fundamental

Table 3 Physical constants used in the numerical simulations

Symbol Description Value

Ta Temperature of the atmosphere 298 K

Ra Specific gas constant of the atmosphere 287.05 J kg−1 K−1

cP,a Specific heat at constant pressure of
the atmosphere

1,005 J kg−1 K−1

R0 Specific gas constant of nitrogen 271.75 J kg−1 K−1

cP,g Specific heat at constant pressure
of nitrogen

1,042 J kg−1 K−1

cP,s Specific heat at constant pressure
of solid particles

1,617 J kg−1 K−1
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importance for producing the higher entrainment coefficient
(about 0.11) of true buoyant plumes. However, air entrainment
also affects the cold dilute experimental jets, even though they
are in thermal equilibrium with the surroundings. Thus, en-
trainment occurs also in the case of pure forced convection, if
particle concentration is low. The cold jets do not reach
buoyancy, but neither do the they evolve into collapsing
fountains. Although the entrainment rate is lower than that
of the hot jets (evolving into buoyant plumes), dilution is
sufficient in expanding the gas-particle mixture so that a
“massive” collapse does not occur. In this case, particles fall
down from the column margins. Therefore, it can be
concluded that collapsing fountains forming pyroclastic
flows result only from dense eruptive columns that lack
significant air entrainment. This is in agreement with the
condition for column collapse presented by Degruyter and
Bonadonna (2013): if ε is equal to 0, the parameter

Γ 1 ¼ −Ri
ε

ð20Þ

tends to infinity, forcing any eruptive scenario to fall into the
collapsing column stability field (see Fig. 2 of Degruyter and
Bonadonna (2013)).

In order to assess the general agreement between exper-
iments and numerical simulations, Fig. 10 shows the
maximum height due to initial momentum (zmax,num)
calculated by the model, plotted against the maximum
height due to initial kinetic energy (zobs) measured by
experiments. Data for all the runs of Table 2 are shown.
The maximum observed height of the experiments is
predicted well by the numerical model (r=0.95, Fig. 10).
Thus, the model reproduces correctly the experimental
column evolution if the actual entrainment coefficient,
as measured experimentally, is used. Furthermore, in the
case of no entrainment (collapsing fountains), the numerical
model reproduces almost exactly the analytical solution
proposed in the “Experiment results and analysis” section
(see Table 2). Therefore, for dense collapses, the nu-
merical solution and that obtained from Bernoulli’s equation
give similar results.
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Fig. 9 Typical vertical profiles of
vertical velocity of the bulk
mixture (U, dashed lines) and
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calculated by the numerical
model for a dense collapsing
column (a experiment 3 of
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column (b experiment 24 of
Table 2). c Vertical profiles of
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line) in the case of a dilute hot
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Relevance of experimental and numerical results
to natural volcanic columns and conclusive remarks

Due to the technological limitations in inspecting the internal
structure of opaque multiphase gas-particle flows, the exper-
imental measurements presented in this paper lack the details
of the internal gradients of velocity and particle volumetric
concentration in the eruptive column. However, the facility we
used allowed acquisition of results that shed new light on the
eruptive regime of buoyant volcanic plumes and collapsing
fountains. Our experiments produced fully turbulent flows, for
which conduit exit velocity, particle volumetric concentration,
and column height were measured. The new data allowed the
application of fluid dynamic scaling laws that helped to con-
strain the eruptive conditions leading to pyroclastic flows vs.
fallout.

To our knowledge, there are no other large-scale experi-
ments specifically tailored for the case of gas-pyroclast mix-
tures with which to compare our data. It was therefore hard to
find a way to judge the general quality of our results. The only
way was to compare our experiments with results from the
recent fluid dynamics literature, as well as with the rare
observations of natural events, where exit velocities, column
height, and mass flow rate were measured (e.g. the eruption of
Montserrat volcano, Formenti et al. (2003)).

Our experiments show that in the case of dense collapsing
columns forming pyroclastic density currents, the entrainment
of external fluid is not significant, which is in agreement with
the results of the analytical and numerical calculations pre-
sented here. Similar conclusions were reached by other au-
thors by means of observation of natural events (Formenti
et al. 2003) and of theoretical considerations (Carazzo et al.
2008). This outcome agrees well with the recent fluid dynam-
ics literature, where it is suggested that with Fr0’ smaller than

3, entrainment is not effective (Kaye and Hunt 2006; Lin and
Armfield 2008). The same result was obtained by our exper-
iments, and we suggest that this value of Fr0’ discriminates
the source conditions leading to fallout vs. pyroclastic density
currents. The cause of the lack of air entrainment is to be
attributed to the large density difference at the interface
between the internal and external fluid, as suggested by
Kaminski et al. (2005), and not to the lack of turbulence, since
our experiments are all at high Reynolds numbers. In the case
of our cold dilute columns, the entrainment coefficient is
about 0.06, which is similar to those of pure jets reported in
the fluid dynamics literature (Turner 1986; Kaye and Hunt
2006; Carazzo et al. 2008). In contrast, for hot dilute columns
driven by thermal buoyancy, the entrainment coefficient is
about 0.11, which is similar to those of plumes (Turner
1986; Woods 2010). Both cold and hot dilute columns have
densimetric Froude numbers greater than 3 and were success-
fully simulated by the numerical code, confirming the com-
patibility of our experimental measurements with a top-hat
model. We note that even when there is no thermal buoyancy,
and the Froude number is greater than 3, air entrainment
produces a strong dilution of the gas-particle mixture,
resulting in particle fallout from the column margin, but not
in a collapse. We conclude that the only way to produce
substantial density currents is by dense eruptive columns with
no entrainment, which leads to densimetric Froude numbers
lower than 3. Based on this outcome, it is possible to construct
a diagram in which the source conditions (exit velocity, con-
duit radius, and particle volumetric concentration) define the
stability fields of pyroclastic density currents vs. fallout. Such
a stability field diagram is shown in Fig. 11, where the
threshold limit of 3 for the densimetric Froude number is used
to draw the solid curves delimiting the field of pyroclastic
flows (areas under the curves) vs. pyroclastic fallout (areas
above the curves), as a function of exit velocity and conduit
radius. The solid curves represent particle volumetric concen-
trations (and the corresponding values of gas mass fraction) at
the vent, and the dashed curves represent the total mass flow
rate. The diagram agrees well with a similar diagram proposed
by Dellino et al. (2010), which uses as a threshold limit the
value of 500 s−1 for the vorticity factorΩ, which discriminates
convective plumes (when Ω>500 s−1) from collapsing col-
umns (when Ω<500 s−1), and is given by

Ω ¼ 2U 0

r0C0
ð21Þ

This means that the vorticity factor discriminates the erup-
tive regime in a similar way as the initial densimetric Froude
number, which is not surprising since vorticity controls the
ability of the gas-particle flow to mix with the surrounding
fluid.
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Previous studies have shown that larger conduit radii and
lower exit velocities favor collapsing columns and lead to the
formation of pyroclastic density currents, as do lower gas
mass fractions (higher particle volumetric concentrations).
Figure 11 also shows this general behavior, but when we
compare it in detail with similar diagrams of the literature,
significant differences emerge regarding the values at which
the transition between the two eruptive styles occurs. The
stability field of collapsing columns is quite different, for
example, from that of Wilson et al. (1980) (see also Cioni
et al. 2000). The agreement is relatively good only for rather
high particle volumetric concentrations (C0=0.0133; low gas
mass fractions, n0=0.01), while for lower particle concentra-
tions (higher gas mass fractions), and a given conduit radius,
the limit between convective plumes and collapsing columns
is met at higher exit velocities than in Wilson et al. (1980).
This means that the stability field of collapsing columns
calculated by our model is wider. This is likely due to the fact
that the Wilson et al. (1980) diagram was calculated based on
Morton’s plume theory, which should not be applied to dense
collapsing columns, as emphasized by Carazzo et al. (2008).
Indeed, dense columns violate the assumptions of Morton’s
model, specifically the one that states that scalar quantities (in
our case solid particles) must not significantly change the
density of the fluid (assumption (4)). Our diagram agrees
reasonably well with that proposed by Carazzo et al. (2008)
if the combination of exit velocity and particle volumetric

concentration is set to define the total mass flow rate. The
Carazzo et al. (2008) diagram results, as does ours, from a
model based on a variable entrainment coefficient that is quite
low for small gas mass fractions. Furthermore, good agree-
ment is observed between Fig. 11 and the regime diagrams
proposed by Suzuki and Koyaguchi (2012). In particular, we
have compared results on the transition between the fountain-
type collapse and the other regimes by extracting from the
curve the exit velocity that corresponds to a fixed mass erup-
tion rate (MER) value. Our exit velocities at the transition (for
the corresponding gas mass fraction n) agree reasonably well
with those of Suzuki and Koyaguchi (2012), and the observed
scatter (about 20–40 m s−1) can probably be attributed to the
lack of conduit radius value in their diagram. In order to
further constrain the similarity between the two diagrams,
we calculated the Fr0’ from the simulations of Suzuki and
Koyaguchi (2012) for fountain-type collapses and verified
that the Froude number is always below our proposed
threshold limit of 3, thus well within the collapsing column
regime. Finally, we compared our diagram with the regime
diagrams of Degruyter and Bonadonna (2013) upon calculat-
ing, for some selected points shown in Fig. 11, their Γ1

parameter (Eq. 20). Degruyter and Bonadonna (2013) also
consider a second parameter, which is dependent on wind
entrainment; in our calculations, the effect of wind was
neglected, thus this parameter is set to 0. Point A in Fig. 11
(U0=200 m s−1, r=150 m) falls in the buoyant plume stability

A

B
C

Fig. 11 Diagram based on the threshold value Fr0’=3, showing the
stability field of pyroclastic fallout vs. pyroclastic density current as a
function of conduit radius and exit velocity. The solid lines represent
various values of particle volumetric concentration, C, and corresponding
gas mass fraction, n. For the given C and n, the area below each curve is
the stability field of pyroclastic density currents. The area above the curve
is the stability field of pyroclastic fallout. The dashed lines represent

various values of mass eruption rate, MER. The value of the height from
which the column collapses in the natural case, H, based on the
Bernoulli’s equation, is shown at the intersections of the dashed lines
and solid lines. Points A, B, and C lying on the line r=150 m are added
for comparison with the stability fields proposed by Degruyter and
Bonadonna (2013)
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field above the curve C=0.025, which we choose here as a
representative value. If the entrainment coefficient is taken
equal to 0.1 (which is reasonable for a buoyant plume) a value
of Γ1=1.12 is found for this point, which is well within the
buoyant plume stability field in the diagram of Degruyter and
Bonadonna (2013). For point B (U0=130 m s−1, r=150 m)
lying on the transition curve C=0.025, if the entrainment
coefficient is taken equal to 0.05 (close to the condition
leading to collapsing columns), a value of Γ1=5.3 is found,
which lies in the transition field of Degruyter and
Bonadonna’s diagram. Finally, for point C (U0=90 m s−1,
r=150 m), which falls in the collapsing column stability field
below the transition curve C=0.025, if the entrainment coef-
ficient is taken equal to 0.05, a value of Γ1=11.1, well within
the collapse field of Degruyter and Bonadonna (2013) is
found. These three examples show that our stability field
diagram and the one by Degruyter and Bonadonna (2013),
which are based on different data and theoretical consider-
ations, give similar results that help in the interpretation of
explosive eruption regimes by means of fluid dynamics scal-
ing laws.

The height at which collapse occurs, H, as calculated by
Bernoulli’s equation (Eq. 15), is marked on the various curves
in Fig. 11. This collapse height is much less than that proposed
by Woods (1988). The difference is due to the fact that in
Woods (1988), collapsing columns are calculated on the as-
sumption that even when buoyancy is not achieved, an en-
trainment coefficient of 0.06 is maintained, which can cause a
collapse. However, this is not the case in our experiments and
numerical simulations, which suggest instead that column
collapse (and formation of significant density currents) is
obtained only in the case of no entrainment.

The use of Fig. 11 can help to constrain the initial condi-
tions and eruptive style (pyroclastic flow vs. fallout) of haz-
ardous explosive volcanoes. For example, if field data of
pyroclastic flow deposits are used to constrain conduit radius
or mass eruption rate (when the total volume of pyroclastic
deposits is known, and eruption duration can be assumed), it is
possible to set the threshold limit (Fr0′=3) for the formation of
a collapsing column, calculate the exit velocity, and find the
approximate value of maximum height by means of
Bernoulli’s equation. This would set a fundamental constraint
on the potential energy for the collapse, which ultimately
controls the runout of a pyroclastic density current. The ver-
ification of this hypothesis, and its consequences for the
mobility and potential impact of ensuing pyroclastic flows,
represent the future development of this research. This analy-
sis will be carried out with theoretical and numerical models
that will be validated experimentally and verified by field
data. Another possible step towards a better understanding
of column dynamics would be to compare the video footage of
our experimental columns with those of real eruptions, in
order to apply the video analysis proposed here and compare

results with previous analysis (e.g., Andrews and Gardner
2009).
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