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Abstract 15 

Real-time monitoring of volcanic ash plumes with the aim to estimate the mass eruption rate 16 

is crucial for predicting atmospheric ash concentration. Mass eruption rates are usually 17 

assessed by 0D and 1D plume models, which are fast and require only a few observational 18 

input parameters, often only the plume height. A model’s output, however, depends also on 19 

the plume height data handling strategy (sampling rate, gap reconstruction methods and 20 

statistical treatment), especially in long-term eruptions with incomplete plume height records. 21 

To represent such an eruption, we used Eyjafjallajökull 2010 to test the sensitivity of six 22 

simple and two explicitly wind-affected plume models against 22 data handling strategies. 23 

Based on photogrammetric measurements, the wind deflection of the plume was determined 24 

and used to re-calibrate radar-derived height data. The resulting data was then subjected to 25 

different data handling strategies, before being used as input for the plume models. The 26 

model results were compared to the erupted mass measured on the ground, allowing us to 27 

assess the prediction accuracy of each combination of data handling strategy and model. 28 

Combinations that provide highest prediction accuracies vary, depending on data coverage, 29 

eruption intensity, and fragmentation mechanism. However, for this type of moderate-to-30 

weak eruption (VEI 3 in terms of maximum intensity), the most important factor was found to 31 

be the prevailing wind speed. When wind speeds exceed 20 m/s, most combinations of 32 
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strategies and models provide predictions that underestimate the erupted mass by more than 33 

40%. Under such conditions, the optimal choice of data handling strategy and plume model 34 

is of particular importance. 35 

 36 

Introduction 37 

Volcanic ash injected into the atmosphere during explosive eruptions can pose a serious threat for 38 

aviation and air-travel infrastructure (Kienle et al. 1980; Grindle and Burcham 2002). Next to direct 39 

observations of the ash cloud (e.g. satellite imagery and lidar retrievals) predictions of movement of 40 

volcanic ash clouds are based on atmospheric ash dispersion models (Dacre et al. 2011; Kristiansen et 41 

al. 2012; Dioguardi et al. 2016, 2020). Inaccurate predictions can on one hand lead to severe damage 42 

to and even loss of aircraft (Guffanti et al. 2010), or the other hand to airport closures framed or 43 

perceived as over-cautious (Harris et al. 2012; Harris 2015) and flight diversions or cancellations, 44 

which involve large preventable costs (e.g., Brannigan 2011; Macrae 2011; Ragona et al. 2011). This 45 

underlines the need for accurate, reliable and confident model forecasts, the lack of which is the 46 

current bottle neck in our forecasting capability. Key to achieving such forecasts is thus to be able to 47 

provide an ash dispersion model with accurate near-term eruption source parameters, i.e. physical 48 

quantities, which characterize the eruptive source. In this regard the most important eruption source 49 

parameter is the mass eruption rate (MER) (e.g., Degruyter and Bonadonna 2012; Mastin 2014; 50 

Bonadonna et al. 2016),  that is the mass flux of the eruptive gas-ash mixture, expressed in kg/s 51 

(Wilson and Walker 1987).  52 

MER cannot be directly measured. However, methods have been developed that infer MER using 53 

observable properties of the plume. These include using video analyses of ash plumes and ejecta 54 

(e.g., Wilson and Self 1980; Valade et al. 2014; Dürig et al. 2015b, a; Pioli and Harris 2019; Tournigand 55 

et al. 2019), emitted infra-sound waves (Johnson and Ripepe 2011; Ripepe et al. 2013), thermal 56 

infrared signatures (e.g., Harris 2013; Ripepe et al. 2013; Harris et al. 2013; Cerminara et al. 2015), 57 

electrostatic field (Büttner et al. 2000; Calvari et al. 2012), interpretation of microwave radar signals 58 

(Montopoli 2016; Marzano et al. 2020) or satellite-based estimates (e.g., Pouget et al. 2013; 59 

Pavolonis et al. 2018; Gouhier et al. 2019; Bear-Crozier et al. 2020). For real-time MER assessment, 60 

however many of these approaches are still in an experimental state or struggle with high 61 

uncertainties as they often depend on data that are hard to obtain in situ, e.g. the vent geometry 62 

(Dürig et al. 2015a). These methods will thus not be considered here. 63 

The most straightforward and reliable observable in an explosive eruption is usually the height of the 64 

eruptive column H. A number of plume models linking H with the mass eruption rate at the vent have 65 
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been developed (for in-depth overview see Costa et al. 2016). These range from “simple” theoretical 66 

(Wilson and Walker 1987; Woods 1988) and empirical 0D models (Sparks et al. 1997; Mastin et al. 67 

2009), through explicitly wind-affected steady 1D models (Bursik 2001; Degruyter and Bonadonna 68 

2012; Devenish 2013; Woodhouse et al. 2013; Mastin 2014; de’Michieli Vitturi et al. 2015; Folch et al. 69 

2016; Aubry et al. 2017) to elaborate time-dependent multi-phase models in 2D (Neri et al. 1998) or 70 

3D space (Esposti Ongaro et al. 2007; Suzuki and Koyaguchi 2012; Cerminara et al. 2016).  71 

At present, real-time MER assessments must rely on simple 0D and explicitly wind-affected 1D 72 

models, which have the advantage of providing fast results (e.g., Sparks et al. 1997; Bursik 2001; 73 

Woodhouse et al. 2013). A monitoring system that uses a suite of such models to assess the mass 74 

eruption rate in near-real time is the software REFIR (Real-time Eruption source parameters 75 

FutureVolc Information and Reconnaissance system) (Dürig et al. 2018; Dioguardi et al. 2020). Simple 76 

0D models are limited by initial assumptions, accuracy of measured parameters (plume height and 77 

mass) and simplifications on which they are based. To assess the effect of these shortcomings, this 78 

study explores three aspects that might limit the models’ accuracies:  79 

1. the effect of plume height uncertainties resulting from a stepwise horizontal ground-80 

based radar scanning technique on MER estimates. 81 

2. the sensitivity of data handling strategies on model predictions when dealing with 82 

incomplete sets of plume height recordings. 83 

3. the impact of wind on MER prediction by non-explicitly wind-affected plume models 84 

in comparison to the impact of using different data handling strategies. 85 

The term “data handling strategies” refers to the statistical treatment of plume height data before it 86 

is used as a model input. Note that with “plume height” we refer to the maximum elevation of the 87 

plume above vent, unless stated otherwise. Since plume height H and mass eruption rate Q are 88 

related in a highly non-linear way, the time-averaged mass eruption rate 𝑄(𝑡)̅̅ ̅̅ ̅̅  is in most cases not 89 

identical to Q resulting from using the time-averaged plume height 𝐻(𝑡)̅̅ ̅̅ ̅̅  as input. Thus: 90 

     𝑄(𝑡)̅̅ ̅̅ ̅̅ ≠ 𝑄(𝐻(𝑡)̅̅ ̅̅ ̅̅ )     (1) 91 

Although rarely acknowledged, this fact implies that not only the plume height H itself, but also the 92 

time interval over which it is measured, as well as the statistical strategy for its assessment, are 93 

expected to affect a model’s outcome. 94 

In our model sensitivity study, we focus on the 2010 Eyjafjallajökull (Iceland) eruption. This event 95 

featured a wind-affected plume (Gudmundsson et al. 2012), which was monitored by a stepwise 96 

horizontally scanning radar. The resulting plume height records were incomplete (Arason et al. 2011). 97 
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The 2010 Eyjafjallajökull eruption therefore represents an ideal test case for the exploration of the 98 

three aspects mentioned above.  99 

The Eyjafjallajökull 2010 eruption 100 

The 2010 eruption of Eyjafjallajökull had four phases of activity.  101 

• Phase I: lasting from 14 April 2010 until noon of 18 April, was an initial explosive phase with 102 

phreatomagmatic activity (Gudmundsson et al. 2012; Dellino et al. 2012).  103 

• Phase II: (second half of 18 April - 4 May) was a phase of low discharge that was effusive with 104 

relatively weak but sustained explosive activity (Gudmundsson et al. 2012). 105 

• Phase III: (5 - 17 May) saw a significant increase of explosive activity, coinciding with a 106 

change in melt composition from benmoreite to trachyte (Gudmundsson et al. 2012). This 107 

phase was characterized by the emission of distinct explosive ash pulses (Dürig et al. 2015b, 108 

a) and is often referred to as “second explosive phase” (Gudmundsson et al. 2012; Dellino et 109 

al. 2012). 110 

• Phase IV: (18 - 22 May) was characterized by a decline in eruption activity and plume height.  111 

Although the end of eruption is set on 22 May, minor isolated explosive events occurred on 112 

4-8 June 2010 (Gudmundsson et al. 2012).  No ash plumes were detected on radar after 113 

10:20 UTC on 21 May, when the plume fell below the detection limit of 2.5 km (Arason et al. 114 

2011).  115 

The eruption’s fallout was measured in considerable detail at about 400 locations in Iceland 116 

(Gudmundsson et al. 2012), allowing us to compare model predictions on the erupted mass with the 117 

actual amount of mass deposited as tephra. For the part of the tephra that fell into the ocean south 118 

and southeast of Iceland a considerable uncertainty exists, but the magnitude of this component can 119 

nevertheless be estimated using well-established thinning behaviour of tephra layers with distance 120 

(e.g., Thorarinsson 1954; Pyle 1989; Fierstein and Nathenson 1992). On 14-16 April, during phase I, 121 

westerly upper-tropospheric winds prevailed, changing to northerly winds by 17 April, directing the 122 

plume to the south (Gudmundsson et al. 2012). As a result, the erupted mass could be assessed 123 

separately as phases Ia and Ib (see Table 1). 124 

The monitoring conditions of this eruption are classified as relatively challenging since it is a 125 

moderate-to-weak eruption that took place under adverse weather conditions (frequent clouds at 126 

low and medium altitudes and strong wind) (Arason et al. 2011; Gudmundsson et al. 2012; Björnsson 127 

et al. 2013), which meant direct observations of the volcanic plume were often not possible. 128 

Data 129 

The data used in this study are:    130 
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i) Plume height obtained by the Icelandic Meteorological Office (IMO) from the C-band 131 

radar in Keflavík (Arason et al. 2011). 132 

ii) Plume height as measured from photographs taken from inspection aircraft (Figure 1). 133 

iii) Plume height as measured on photographs taken from the ground from areas to the 134 

west of the volcano. 135 

iv) Wind speed and direction at plume-relevant altitudes retrieved either from ERA5 or 136 

ICRA. ERA5 is a global reanalysis product by the European Centre for Medium-Range 137 

Weather Forecasts with a horizontal resolution of 30 km (Hersbach et al. 2020). ICRA is a 138 

local reanalysis product by the Icelandic Met Office over Iceland, using the non-139 

hydrostatic numeric weather prediction model HARMONIE-AROME with a horizontal 140 

resolution of 2.5 km (Nawri et al. 2017; Schmidt et al. 2018). Both models have a 141 

temporal resolution of 1h. Since ICRA data were only available up to an altitude of 6 km 142 

a.s.l., we used composite data sets for the ICRA labelled wind speed profiles: ICRA 143 

reanalysis data below 6 km, and ERA5 reanalysis data above. 144 

Radar data  145 

Located at 155 km distance from the vent, the C-band radar at Keflavík airport, was the only weather 146 

radar operating in Iceland at the time of the eruption. The radar’s sampling strategy was to scan at 147 

vertical angles of 0.5°, 0.9°, 1.3°, 2.4°, 3.5°, 4.5° and 6° (Arason et al. 2011). The width of the beam 148 

was 0.9° providing some overlap between scans.  For Eyjafjallajökull, the vertical distance between 149 

the beams of the lowest scanning angles was about 1.1 km and about 3 km between 1.3° and 2.4°. 150 

For a target above the volcano, this leads to a stepping in the plume height records, with preferential 151 

sampling at about 2.5, 3.9, 5.0 and ~8 km height above sea level (for details see Arason et al., 2011).  152 

Photos  153 

The monitoring of vent activity and visual observations of plume behaviour took place on inspection 154 

flights (see Fig. 1; for complete list of surveillance flights, see Appendix. 6.3 in Thorkelsson et al. 155 

(2012)). For flights where the aircraft location was recorded with GPS, it was possible to determine 156 

the position of the camera at the time of a photo with an accuracy higher than 1 km (Gudmundsson 157 

et al. 2015). This is the maximum error in the distance between aircraft and the volcanic vents, or any 158 

other reasonably well-defined target.  159 

In most cases the plume was bent over by the wind, and its bearing was usually obtained from the 160 

position of the aircraft when it was upwind and in line with the plume. Occasionally this was also 161 

done by flying along the plume and determining the location relative to known landmarks.  Errors in 162 

distance to the top of the plume were in this way contained within 1 km in most cases, and less than 163 

2 km in all cases. In the vast majority of cases this amounted to 5-10% of the distance. 164 
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The height of plume was either assessed directly by using the altimeter of the plane (Fig. 1d) or 165 

calculated using the Python software Pixelcalc (Magnússon 2012). The plume top was referenced by 166 

triangulation, using photos of the plume taken in short time intervals from different angles. Given a 167 

known camera-target distance Pixelcalc converts distances between two points on the photo to 168 

actual 3D distances at the location of the target by using the lens and camera specifications, which 169 

are derived from the photo’s metadata. The software corrects for Earth‘s curvature at distances 170 

where it becomes significant. In most cases the plume height is obtained by measuring the distance 171 

on the photo between the plume top and the surface, taking into account plume deflection by wind 172 

and surface elevation under the plume top, to obtain height above sea level. In some cases, where 173 

data on cloud top height are available, height over clouds (i.e., the distance between cloud top and 174 

plume top) is determined. Such cloud heights are in some cases obtained by direct observation using 175 

aircraft altimeter or through independent cloud height measurement using Pixelcalc. The 176 

uncertainties of the heights and horizontal deflection distances vary from one photo to another, 177 

depending on the uncertainties in distances, pixel size and image geometry. Assuming maximum 178 

errors for these parameters, we found the uncertainties of plume height and deflection to be less 179 

than 0.5 km.  180 

In addition to the airborne imagery, photographs taken on the ground were used. For these the 181 

location of the camera is accurately known which allowed us to calculate the distance to the plume 182 

top. Independent information of plume azimuth was used to correct for plume top deflection relative 183 

to vents.  184 

The total number of photos taken on inspection flights are counted in thousands. Not all flights 185 

provided photos that allow reliable determination of plume height, e.g., due to cloud cover. Only the 186 

photos best suited for analysis were used, yielding in total 165 observations of plume heights, 187 

covering 17 of the 38 eruption days examined. From these photos, 148 were taken in the air, and 17 188 

on the ground. In 85 cases these photos could also be used to assess the plume deflection (i.e., the 189 

horizontal shift of the plume top towards the vent location).  190 

Methods 191 

Models 192 

For estimating the MER, we used six simple (non-explicitly wind-affected) plume models and two 193 

wind-affected models, which are for simplicity referred to by the name of their first authors:  194 

• Wilson (Wilson and Walker, 1987) - a theoretical model based on the theory of buoyant 195 

plumes by Morton et al. (1956) which estimates the mass eruption rate Q by: 196 

𝑄𝑊𝑖𝑙𝑠𝑜𝑛 = (𝐻/𝑐)4     (2) 197 
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where H denotes the plume height (in m) and c is a constant which is 236 m (s/kg)1/4. 198 

To the group of non-explicitly wind-affected numerical models tested in this study we include three 199 

derivatives of the Wilson model, which use Eq. (2), but with different constants c based on empirical 200 

data from plumes with basaltic or andesitic tephra. They are referred to as: 201 

• Wehrmann (Wehrmann et al. 2006), which uses for c a value of 295 m(s/kg)1/4. 202 

• Scollo (Scollo et al. 2007), using 247 m(s/kg)1/4 for c. 203 

• Andronico (Andronico et al. 2008), for which 244 m(s/kg)1/4 is selected for c. 204 

Two empirical models were used, which are based on correlations between plume height during 205 

eruption and the quantity of tephra found in deposits: 206 

•  Sparks (Sparks et al., 1997) - an empirical model which approximates Q by:  207 

𝑄𝑆𝑝𝑎𝑟𝑘𝑠 = 𝜌 ∙ (𝐻/𝑐)3.86    (3) 208 

where ρ is the dense-rock equivalent (DRE) density of the tephra within the plume. Following 209 

Gudmundsson et al. (2012), a DRE density of 2600 kg/m³ was used for all computations and the 210 

constant c is given by Sparks et al. (1997) as 1670 m(s/kg)1/3.86. 211 

• Mastin (Mastin et al., 2009) – an empirical model with  defined as in (3) which estimates the 212 

mass eruption rate by:  213 

𝑄𝑀𝑎𝑠𝑡𝑖𝑛 = 𝜌 ∙ (𝐻/𝑐)4.15    (4) 214 

where c is given by Mastin et al. (2009) as 2000 m(s/kg)1/4.15. 215 

Since these models are empirically constrained they reflect the influence of the wind on plume-216 

height to some degree (Mastin 2014) and can therefore be seen as implicitly wind-affected.   217 

To juxtapose these simple plume models with explicitly wind-affected models we included two 218 

examples of the latter category: 219 

• Woodhouse (Woodhouse et al. 2013) – an empirical relationship of a numerical 1D 
model, which estimates the MER by:  

 

𝑄𝑊𝑜𝑜𝑑ℎ𝑜𝑢𝑠𝑒 = (
ℎ

0.318
∙

1 + 4.266𝒲𝑠̃ + 0.3527𝒲𝑠̃
2

1 + 1.373𝒲𝑠̃

)

3.953

 

 

(5) 

where h denotes the centreline plume height (in km) and 𝒲𝑠̃ quantifies the strength of the wind 220 

shear from the ground to a reference height H1, according to: 221 

𝒲𝑠̃ = 1.44
𝑉1

𝑁̅𝐻1

 (6) 
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with V1 being the wind speed at H1 and 𝑁̅ being the average buoyancy frequency. The latter 222 

parameter is determined by: 223 

𝑁̅2 =
1

ℎ
∫ 𝑁2(𝑧)𝑑𝑧

ℎ

0

=
1

ℎ

𝑔

𝐶𝑎0𝑇𝑎0
∫ (1 +

𝐶𝑎0

𝑔

𝑑𝑇𝑎

𝑑𝑧
) 𝑑𝑧

ℎ

0

 

 

(7) 

with g, C, and T being the gravitational acceleration, heat capacity and temperature. Parameter z 224 

denotes the vertical coordinate above the source, subscript a refers to the atmosphere, and 0 to the 225 

volcanic source vent height. Note that a plume’s top height H coincides with the elevation of its 226 

centreline h only for strong eruptions with vertical ash columns (Mastin 2014), which introduces an 227 

error when using H as an input for a weak or moderate eruption. Since for Eyjafjallajökull 2010 the 228 

exact conversion from H to h is unknown, for simplicity, in this study we assumed that the centreline 229 

height h was always 10% lower than H.  230 

• Aubry (Aubry et al. 2017): A scaling relationship which uses multiple linear regression to 231 

relate the logarithm of the MER to the logarithm of the plume height H (in km), the logarithm 232 

of the average buoyancy frequency 𝑁̅ (eq. (7)), and a windscaling parameter 𝒲0
∗: 233 

log(𝑄𝐴𝑢𝑏𝑟𝑦) = 𝐶 + 𝐶𝐻 log(𝐻) + 𝐶𝑁 log(𝑁̅) + 𝐶𝑊𝒲0
∗ 

 
(8) 

where the constants 𝐶 = 7.4, 𝐶𝐻 = 3.4, 𝐶𝑁 = 2.3 and 𝐶𝑊 = 1.1 are empirically determined. The 234 

wind scaling parameter 𝒲0
∗ is described by: 235 

𝒲0
∗ =

𝑊

𝑈0
=

𝑊

1.85√𝑅𝑛0𝑇0

 

 

(9) 

where W is the horizontal wind speed averaged over the plume height, 𝑈0 is the eruption exit 236 

velocity, R=461.5 J/K/kg is the gas constant of volcanic gas at vent, 𝑛0 is the magma volatile content, 237 

and 𝑇0 is the exit temperature. Here we assume that n0 = 3 wt% (Woodhouse et al. 2013) and 238 

T0 = 1323 K for Eyjafjallajökull(Keiding and Sigmarsson 2012). 239 

For the goals of this study, we put our focus on the simple plume models. These have the advantage 240 

that they use plume height as the only independent variable. In their entirety, the six simple models 241 

represent the empirical variation of the predictions by the theoretical Wilson model. In contrast to 242 

simple models, the more sophisticated explicitly wind-affected models depend on additional 243 

variables and parameters, (e.g., atmospheric parameters, wind entrainment coefficient, volatile 244 

content, magmatic temperature, top vs centreline height) which are further sources of uncertainties 245 

that have to be taken into account when analysing the model results.  246 
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Plume height data handling strategies 247 

The radar data set is based on sampling intervals of 5 minutes, but the data set is incomplete (Arason 248 

et al. 2011). Reasons for missing data were (Arason et al. 2011): 249 

i) The plume was below the visible horizon from Keflavík, which limited the lowest 250 

observable plume to 2.5 km. 251 

ii) The plume was obscured by precipitating clouds. 252 

iii) The radar was malfunctioning.  253 

iv) The plume was absent, and the data gap was “real”. 254 

Here we explore 22 strategies to construct a data set with an improved coverage of the complete 255 

eruption (see Table 2). In the example of Figure 2a, a data set was segmented into 3h and 6h static 256 

blocks, composed of 36 and 72 bundled five-minute slots, respectively, illustrating how much of the 257 

eruption was covered according to the blocks. For example, a data coverage of 50% means for a 6h 258 

block that 36 of its 72 entries are missing. In this study, we distinguish between data voids and gaps. 259 

Voids are defined as empty or missing 5-minute slots in a block that otherwise contains data. In 260 

contrast, a completely empty block of data is called a gap. Figure 2b and c summarize the 3h- and 6h 261 

gaps in the radar records of the Eyjafjallajökull 2010 eruption.    262 

The tested strategies can be divided into five main categories (see Table 2). Aspects included in the 263 

tested strategies are: sampling method, void reconstruction, gap reconstruction, timebase, time 264 

steps and a factor introduced to correct for data reduction bias (Y-correction): 265 

Static plume height reconstruction (SH) 266 

Static plume height reconstruction (SH) strategies bundle data by splitting the data set into static 267 

time intervals (blocks) and using plume height averages. The vast majority of studies using plume 268 

heights for MER modelling apply SH-strategies. Studies on Eyjafjallajökull used the data by Arason et 269 

al. (2011) with blocks typically ranging from 1 h (Woodhouse et al. 2013) to 6 h (Kaminski et al. 2011; 270 

Bursik et al. 2012; Mastin 2014). Others report plume heights averaged over eruptive episodes that 271 

can include multiple eruptive phases (Aubry et al. 2021).  272 

Sampling method: SH strategies applied static sampling whereby the whole data set was simply split 273 

into fixed time intervals (static blocks) of a given uniform duration (see Fig. 2f).  274 

Void reconstruction: Voids, i.e., missing plume height values within a block, were filled with the 275 

mean value of the interval (see Fig. 2e).  276 

Gap reconstruction: When applied, the heights of the missing blocks were reconstructed. The 277 

missing blocks were replaced by linearly interpolating between the previous and following block (see 278 

Fig. 2f). Where only void reconstruction but no gap reconstruction was used, strategies are labelled 279 
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with gap. In contrast, static sampling strategies which applied both void and gap reconstruction are 280 

termed interpolated (int).  281 

Timebase: describes the width (i.e., duration) of a block.  SH-strategies were tested for four 282 

timebases, covering the range from highest to lowest resolution (see time steps). 283 

Time steps: describes which time interval is used for data sampling. For static sampling strategies, 284 

the time step is identical to the timebase.  285 

No data bundling is required when using five-minute time steps. In this case the integrated mass 286 

M5min over the tested eruption period of duration D (in seconds) was calculated by: 287 

𝑀5𝑚𝑖𝑛 = ∑ 𝑄𝑗,𝑚𝑜𝑑𝑒𝑙(𝐻5𝑚𝑖𝑛,𝑗) ∙ ∆𝑡
𝑓
𝑗=1     (10) 288 

with the time step Δt=300s, f = D/Δt, and Qj,model (H5min,j) being the mass eruption rate Qj provided by a 289 

specific plume model with H5min,j as input parameter.  290 

By increasing the time steps, the data coverage is increased (see Fig. 2) at the cost of temporal 291 

resolution. For example, when using static blocks with a time step of 3h, the integrated mass M3h is 292 

given by: 293 

𝑀3ℎ = ∑ 𝑄𝑗,𝑚𝑜𝑑𝑒𝑙(𝐻3ℎ,𝑗) ∙ ∆𝑡
𝑓
𝑗=1     (11) 294 

where H3h,j is the 3 h - averaged plume height and the time step Δt=300s × 36 = 10,800s. 295 

Correspondingly, Δt is doubled when using a 6h time step, and a 6h plume height average is used as 296 

model input. As time step of lowest temporal resolution, we used the complete eruptive phase for a 297 

static block (see Table 1): 298 

𝑀𝑝ℎ𝑎𝑠𝑒 = 𝑄𝑚𝑜𝑑𝑒𝑙(𝐻𝑝ℎ𝑎𝑠𝑒) ∙ ∆𝑡     (12) 299 

 with Δt being the phase’s duration and Hphase being the phase-averaged plume height. Equation (12) 300 

was also applied for testing the complete eruption with Δt = E, where E is the whole recorded 301 

eruption period. The corresponding diagrams are labelled as all (for all phases). In total, we used four 302 

different time steps for SH strategies (5min, 3h, 6h, phase). For example, an SH-strategy with a 303 

timebase of 6 h and applied gap reconstruction is denoted SH_6h_int. 304 

Y-correction: To adjust for the bias induced by data reduction, four of the tested SH strategies 305 

multiplied the resulting masses with a correction factor 1/Y (see below). Strategies with Y-correction 306 

use the additional letter “Y” as identifier. For example, if Y-correction was applied to the strategy 307 

SH_6h_int, it is denoted SH_Y6h_int. 308 
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Static Sampling of five-minute intervals (S_5min_gap) 309 

Being a special case of the SH strategy, the S_5min_gap strategy uses equation (10) for the 310 

computation of the total erupted mass and does not apply gap reconstruction. Since it uses the 311 

highest possible temporal resolution, voids cease to exist, and every missing data is a gap, which is 312 

treated as a “real measurement” by the S_5min_gap strategy.  313 

Static MER reconstruction (SM) 314 

When using average plume heights for reconstructing voids and gaps, we would expect to produce a 315 

systematic arithmetic error in the computation of erupted mass by the equations (10)-(12), since, 316 

according to equation (1), the average plume heights do not yield representative MERs. The static 317 

MER reconstruction (SM) strategy follows therefore a different path. Instead of using average 318 

heights, void and gap reconstruction is applied by reconstructing the “missing” MERs for each time 319 

step. 320 

Sampling method: SM strategies apply static sampling.  321 

Void reconstruction: Voids were filled with the average MER value of the interval. The erupted mass 322 

M of a block B was therefore computed by: 323 

𝑀3ℎ,𝐵 = (∑ 𝑄𝑗,𝑚𝑜𝑑𝑒𝑙(𝐻5𝑚𝑖𝑛,𝑗) ∙ ∆𝑡36
𝑗=1 )  ∙

36

(36−𝜆)
   (13) 324 

𝑀6ℎ,𝐵 = (∑ 𝑄𝑗,𝑚𝑜𝑑𝑒𝑙(𝐻5𝑚𝑖𝑛,𝑗) ∙ ∆𝑡72
𝑗=1 )  ∙

72

(72−𝜆)
   (14) 325 

where λ is the number of voids in block B and Δt = 300 s. 326 

Gap reconstruction: When applied, the MERs of the missing blocks were reconstructed. The missing 327 

intervals were replaced by linearly interpolating between the masses of the previous and following 328 

block. 329 

Timebase: Two different timebases were tested (3 h and 6 h) with the SM strategies. In addition, we 330 

tested a strategy with a five minute timebase and MER-reconstructed gap (SM_5min_int). 331 

Time steps: see timebase. 332 

 333 

Dynamic plume height and MER reconstruction (DHM) 334 

The DHM strategies combine plume height and MER reconstruction, and apply dynamic sampling, 335 

which is particularly useful for real-time monitoring purposes (Dürig et al. 2018; Dioguardi et al. 336 

2020). 337 

Sampling method: Dynamic sampling, using blocks of a uniform duration with moving start and end 338 

times. The width of the block is defined by the timebase, while the temporal increment with which 339 
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the block is moved is described by the time step. For example, a dynamic sampling strategy using a 340 

3h timebase means that at any given time the data of the last 3 hours are considered.  341 

Void reconstruction: Voids were filled with the interval-averaged plume heights, as described for SH 342 

strategies. 343 

Gap reconstruction: The missing blocks were replaced by linearly interpolating between the masses 344 

of the previous and following block, as described for SM strategies. For the presented DHM 345 

strategies, gap reconstruction was always applied. 346 

Timebase: Two different timebases were tested (3 h and 6 h) with the DHM strategies.  347 

Time steps: All DHM strategies strategies used five-minute time steps. 348 

 349 

The REFIR strategies (REFIR) 350 

The strategies discussed so far produce best MER estimates independently from plume height 351 

uncertainties. To consider these, the DHM strategies were modified by computing the MER for a 352 

dynamic block B with: 353 

 𝑄𝑚𝑜𝑑𝑒𝑙,𝐵 = (𝑄𝑚𝑜𝑑𝑒𝑙(𝐻𝐵 − 𝑠𝐵) + 𝑄𝑚𝑜𝑑𝑒𝑙(𝐻𝐵) + 𝑄𝑚𝑜𝑑𝑒𝑙(𝐻𝐵 +  𝑠𝐵)) /3 (15) 354 

where HB is the average height and sB the plume height uncertainty of the block at time t.  355 

These strategies were computed with the software REFIR (Dürig et al. 2018; Dioguardi et al. 2020), 356 

which uses equation (15) to obtain a best MER estimate. We note that while the software is designed 357 

to apply a combination of models linked by weight factors, here we applied it exclusively to individual 358 

models. 359 

Sampling method: Dynamic sampling, see DHM.  360 

Void reconstruction: see DHM. 361 

Gap reconstruction: see DHM. 362 

Timebase: Four different timebases were tested (15 min, 30 min, 1 h and 3 h) with REFIR strategies.  363 

Time steps: All REFIR strategies used five-minute time steps. 364 

 365 

Erupted tephra mass 366 

The erupted mass M was used as validation parameter to test the capability of the assessed models 367 

and data handling strategies in reproducing mass eruption rates. The individual model-derived 368 

results for the four main stages of the eruption were compared to the total masses obtained for each 369 
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of the analyzed phases (Ia, Ib, II, III, IV and all, see Table 1), based on the mapped fallout and 370 

exponential dispersal models for the offshore part (Gudmundsson et al. 2012).  We denote the 371 

measured range of uncertainty ME. 372 

Computation of Y-ratios 373 

To study the impact of data reduction on prediction quality, a subset of 49 selected six-hour blocks 374 

was used, for which the radar data provides high data coverage (containing at least 60 of 72 data 375 

points measured at five-minute intervals). The voids were filled with 6h averages, as described for 376 

the SH strategies. For each of the 6h blocks with the best data coverage the predicted mass erupted 377 

Mi was computed, based on: 378 

I. Five minute radar height data H5min. The integrated mass Mi_5min was calculated by using eq. 379 

(8) with f = 72. 380 

II. Mean, median and maximum heights (H3h_avg, H3h_med, H3h_max) within two 3h intervals. The 381 

integrated mass Mi_3h over a 6h interval was quantified by: 382 

   𝑀𝑖_3ℎ = ∑ 𝑄𝑗,𝑚𝑜𝑑𝑒𝑙(𝐻3ℎ,𝑗) ∙ ∆𝑡2
𝑗=1     (16) 383 

with Δt=10,800s (= 3h) and H3h,j  being H3h_avg, H3h_med, H3h_max..  384 

III. Mean, median and maximum heights (H6h_avg, H6h_med, H6h_max) within the 6h interval, using  385 

   𝑀𝑖_6ℎ = 𝑄𝑚𝑜𝑑𝑒𝑙(𝐻6ℎ) ∙ ∆𝑡     (17) 386 

with Δt=21600s (= 6h) and H6h being H6h_avg, H6h_med or H6h_max, depending on the tested procedure. 387 

Varying plume model, time interval (3h, 6h) and statistical treatment (mean, median, maximum) 388 

results in 24 estimates for Mi for each of the 49 analyzed 6h blocks. These mass estimates were 389 

compared to the respective value Mi_5min based on the 5 minutes data sets, by generating the ratios 390 

Y: 391 

𝑌𝑖 = 𝑀𝑖/𝑀𝑖_5𝑚𝑖𝑛      (18) 392 

Strategies which apply Y-correction (see Table 2) multiply the estimated mass M with the according 393 

time interval-specific correction factor 1/Y. 394 

Plume height uncertainties 395 

We take two types of plume height uncertainties into account for the MER calculations: i) the 396 

observation uncertainty of the corrected radar plume heights, and ii) the uncertainties introduced by 397 

using the average plume height of a block to calculate the MER.  398 

The uncertainty of the radar, Δ𝐻, is assumed to be 0.5 km based on the maximum uncertainty of the 399 

photo heights and the uncertainty estimates given in Aubry et al. (2021). The uncertainty arising from 400 

the block averaging of plume heights is assumed to be equal to two standard deviations σ within 401 
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each block, corresponding to a 95% significance level. The total plume height uncertainty of a block 402 

𝑠𝐵 is then calculated as: 403 

   𝑠𝐵 = √Δ𝐻2 + (2 ⋅ 𝜎(𝐻𝑏𝑙𝑜𝑐𝑘))
2

    (19) 404 

 405 

For strategies where no height averaging is used, σ is equal to zero, and therefore only radar 406 

uncertainties are considered.  407 

Erupted mass uncertainty 408 

The results obtained depend critically on the error in erupted mass. The isopach map reported in 409 

Gudmundsson et al. (2012) is based on about 400 data points obtained during and immediately after 410 

the eruption.  Post-depositional erosion and compaction that often limit the accuracy of tephra layer 411 

thickness and size (Biass et al. 2013; Engwell et al. 2013) are therefore considered to be minor for the 412 

Eyjafjallajökull data. Good spatial coverage in the near field where thicknesses are several meters on 413 

a relatively regular glacier surface result in relative errors in thickness of only a few percent.  In the 414 

far field the relative errors rise, reaching up to 40% for thicknesses <0.2 cm.  The resulting error 415 

reported for volume on land is 15% (Gudmundsson et al., 2012).  For the offshore part the error was 416 

estimated as 40%, based on minimum and maximum extrapolations that are consistent with 417 

observations in the Faroe Islands and mainland Europe (for more detail see methods in 418 

Gudmundsson et al. 2012). The resulting best estimate of maximum total error was 25%. The 419 

contemporary measurements of density of the tephra yielded 1400+/-40 kg m-3 (Gudmundsson et al., 420 

2012) a relative error of 3%.  Treating these two errors as independent, the effect of the error in 421 

density is negligible, resulting in a relative error in mass of 25%. 422 

Results  423 

Plume heights and ERA5 wind speeds 424 

In Figure 3, the radar-derived plume heights are compared with plume heights obtained by photos. 425 

The comparison of the 165 data pairs suggests that on average, photo-based plume heights show an 426 

offset from the radar data of 0.5 km (see Figures 3b and 3c). As a first step for data quality 427 

improvement, this systematic shift was therefore corrected by adding 0.5 km to all radar-derived 428 

plume heights (see Figure 3d). 429 

Figure 4a shows the wind speed profiles over the vent during the Eyjafjallajökull 2010 eruption, 430 

based on the ERA5 reanalysis data. The highest wind speeds, with up to 64 m/s, occurred during 431 

phase I in regions above 6000 m at a time when the recorded plume heights reached similar altitudes 432 
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(for more detailed, phase-specific plots, see Online Resource 1). In Figure 4b, we show the 433 

differences in wind speeds between ICRA and ERA5. 434 

Evaluation of plume height data handling strategies and models 435 

Mean values and standard deviations of the resulting Y-ratios based on the 49 selected 6h blocks are 436 

presented in Table 3. Three statistical treatments were tested for model input, using average, 437 

median and maximum plume height, respectively. The larger the deviation of Y from 1, the less 438 

reliable the tested method of approximation (assuming Mi_5min to be the true value). The Y-ratios 439 

closest to 1 are found using median plume heights. However, using the median also results in 440 

significantly larger standard deviations compared to average plume heights. When using 3h- or 6h- 441 

blocks, all models must be corrected with 1/Y to be comparable to the summation of masses with 442 

5min time step. For Y-corrections we focused on averaged heights, for which Y is almost constant for 443 

all models. Y ranges between 0.89 and 0.91 for 6h-blocks and 0.91-0.92 for 3h-blocks. Therefore, Y-444 

correction strategies for 6h-blocks (denoted Y6h, see Table 2) were tested by using average heights 445 

and a model-independent correction factor of 1/0.9 = 1.1. Accordingly, a correction factor of 1/0.915 446 

= 1.09 was used for Y3h strategies.  447 

Figure 5 demonstrates how the temporal evolution of the erupted mass varies, depending on the 448 

applied plume height strategy and plume model. In both cases, the whole eruption was used as the 449 

reference period, with the measured range of the erupted mass (reported in Gudmundsson et al. 450 

2012) indicated by the red error bar. The curves of Figure 5a show the modelled erupted mass using 451 

strategy SH_3h_gap. This strategy uses 3h-averaged plume heights in combination with applied void-452 

reconstruction but without gap reconstruction (see Table 2). While for this strategy both wind-453 

affected models provide estimates that lie within the measured range, this applies only for one out 454 

of the six simple plume models tested (Wilson). Figures 5b-d show the outcome of Wilson when 455 

applying different strategies. Comparison of model-estimates to the measured mass for individual 456 

eruptive phases is illustrated in Figure 6. When using strategy SH_3h_gap for phase I, most of the 457 

models underestimate the erupted mass, while for phases II to IV Wilson, Andronico, Scollo and 458 

Sparks provide estimates that coincide with the measured range. The same applies to Woodhouse for 459 

the phases I, II and III, while this wind-affected model provides too large estimates for phase IV. The 460 

other wind-affected model tested with SH_3h_gap, Aubry, provides estimated masses that are above 461 

the measured range suggested by Gudmundsson et al. (2012), but provides estimates that are on the 462 

lower margin for phase I. This combination results in a coinciding estimate, when considering the 463 

whole eruptive period (see Fig. 5a). Systematically on the lower end of the estimated range of 464 

modelled masses are Wehrmann and Mastin, suggesting, that SH_3h_gap is not the optimal choice 465 

for these models. This overview is an example for just one of the 22 tested strategies with reference 466 
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to the whole eruption. The phase-specific results for Wilson model outcomes according to the 467 

strategies in Fig. 5b can be found in Online Resource 2.    468 

Figure 7 compares the measured masses of all reference periods with the estimates of four models 469 

using six different strategies with a timebase of 3 hours. The ranges of measured mass for each 470 

eruption phase are marked in green. For example, for phase III the Mastin model (see Fig. 7b) 471 

achieves best fitting estimates when applying the REFIR_3h strategy. Figure 7 demonstrates the 472 

impact that the choice of a strategy has on the modelled MER prediction. Phase II is the phase with 473 

the most abundant gaps in the radar records (see Fig. 2). Thus, it is not surprising that this is also the 474 

phase where the selected strategy has the biggest influence on the predicted MER. For example, for 475 

Mastin the prediction with sampling strategy REFIR_3h is 246 % larger than with SH_3h_gap.  476 

As a general finding, applying sampling strategies with gap reconstruction (int) always results in 477 

larger masses than applying no gap reconstruction methods (gap). The SM_3h_int strategies provide 478 

systematically larger results than DHM_3h or SH_3h_int strategies, due to the non-linear relation 479 

between H and Q.  For the same reason, the mass eruption rates Qmodel(HB + sB) and Qmodel(HB  - sB) in 480 

equation (15) are not symmetrically distributed towards Qmodel(HB). Consequently, the REFIR_3h 481 

strategy provides larger values as best MER estimate compared to other strategies.  482 

When using the whole eruption as the reference period, the effect of the selected timebase for the 483 

REFIR strategy on the model outcome (i.e., the erupted mass estimates) is at maximum 6.8% and 484 

therefore small in comparison to the modelled mass uncertainties (see Online Resource 3). The 485 

largest effect of the selected timebase on the outcome is found for phase IV, where the model 486 

results vary with 12.0% at maximum (see Online Resource 4). Presented results for REFIR methods in 487 

the following are limited to the two endmembers (REFIR_3h and REFIR_15min). 488 

For the static sampling strategies SH and SM, the timebase can have some considerable impact on 489 

the model outcome, especially for phases with abundant gaps. For example, for phase II, the mass 490 

predictions increase by 39 to 42% (depending on the model), if strategy SH_6h_gap is applied instead 491 

of SH_3h_gap. 492 

Discongruence indices and congruency maps 493 

A result table containing the modelled masses for all phases, data handling strategies and models can 494 

be found in Online Resource 5. In order to systematically assess how well the model-estimates 495 

coincide with the measured data, we defined discongruence indices (DIs) in Table 4, based on the 496 

error ME of measured mass data (Table 1). A model prediction that lies within the range of the 497 

measured mass is characterized by a discongruence index of 0. The more the model output deviates 498 

from the ground truth, the larger the DI. To better visualize the results, we produced congruency 499 
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maps, where each index is assigned a colour. Examples for such congruency maps are shown in 500 

Figure 8. There, the dark blue fields mark methods and strategies that lead to estimates that coincide 501 

with the range of mass from ground-based measurements. Combinations of strategies and plume 502 

models, which provide estimates that are just outside of the range of the measured values are 503 

marked in light blue. Predictions that considerably over- or underestimate the erupted mass (DI of 5) 504 

are displayed in orange. The resulting congruency map for the complete phase is presented as Online 505 

Resource 6, and all phase-specific results are provided in Online Resource 7.  506 

Based on the resulting DIs, it was possible to construct tables with their averaged values that allow us 507 

to analyse the prediction qualities of models and data handling strategies for individual eruptive 508 

phases, as well as for the complete eruption (Tables 5 and 6).  509 

Phase-specific comparison of plume height data handling strategies 510 

Table 5 lists for each phase the strategies’ success, represented by discongruence indices averaged 511 

over all tested plume models (separated between simple and explicitly wind-affected models). When 512 

using the entire eruption (all) as the reference period, the overall average DI for all strategies is 0.7. 513 

According to the results, the most successful strategy for the simple models is REFIR_3h with a DI of 514 

0.3. For wind-affected models a number of strategies resulted in predicted mass values congruent to 515 

the measured mass, including SH_6h_gap, SH_6h_int, SM_3h_gap, DHM_6h and DHM_3h.  516 

According to the model-specific DIs averaged over all strategies (Table 6), the models by Wilson and 517 

Sparks were found to have the highest prediction success rate, with DIs of 0.05 and 0.015, 518 

respectively, when considering the entire eruption. When studying individual phases, Andronico and 519 

Sparks turn out to be most successful, with an average DI of 0.05 for phase III. 520 

Below we summarize the results for each of the phases: 521 

Phase Ia: the overall average DI is 2.16, significantly larger than for any other phase. According to 522 

Table 6, the most successful strategy for both simple and explicitly wind-affected models is 523 

REFIR_15min with DIs of 1.7 and 0.5, respectively. 524 

Phase Ib: here strategies provide higher success rates. Optimal strategies for simple models are the 525 

REFIR strategies, as well as SM_6h_gap and SM_6h_int, featuring DIs of 0.5. For wind-affected 526 

models, however, other strategies (e.g., SH_6h_int or DHM_6h) provide better results, while REFIR 527 

strategies result in overestimates of predicted masses.  528 

Phase II: due to relatively weak activity, phase II has the lowest data coverage per block (see Fig. 2d). 529 

Many strategies and models tend to overestimate the erupted mass of this phase. This applies 530 

especially to strategies where gaps were filled by interpolated data (DHM, REFIR and static sampling 531 
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methods with gap reconstruction). For simple models, the best results with a DI of 0.3 are found for 532 

SM_6h_gap, SH_6h_gap and SH_phase, which are strategies with large timebases and no gap 533 

reconstruction. For wind-affected models, the best results were achieved with SM_3h_gap, 534 

SH_3h_gap and SH_Y3h_gap.  535 

Phase III: featured increased explosive eruption at relatively low wind speeds. There, strategies 536 

showed the highest success rates of all phases with an average DI of 0.45 (0.5 for simple models, 0.2 537 

for explicitly wind-affected models). The most successful strategies for simple models were the REFIR 538 

strategies with a DI of 0.3. For Woodhouse and Aubry most of the tested strategies result in 539 

predictions that coincide with the measured mass. Exceptions are the REFIR strategies (DI = 1.0) , and 540 

strategies that apply Y-correction (DI = 0.5). 541 

Phase IV: For the weaker final eruptive phase, the optimal strategies for simple and explicitly wind-542 

affected models were found to be REFIR_15min (DI = 0.2) and S_5min_gap (DI = 0), respectively. 543 

Effect of using ERA5 vs ICRA weather data 544 

So far, the results presented for the explicitly wind-affected models (Woodhouse, Aubry) are based 545 

on ERA5 wind speed data. How much do the results of these models (i.e., estimated erupted mass) 546 

change, when the ICRA data of (considerably) higher spatial resolution are used? In most cases 547 

(except for phase IV), the ICRA data leads to slightly larger mass estimates, but these changes are 548 

almost insignificant, considering the uncertainties (see Online Resource 8 for Woodhouse). For 549 

example, when applying the REFIR 3h strategy to Woodhouse, the differences between model-results 550 

based on ERA5 versus ICRA wind speeds is only approximately 2% for the whole eruption (and 1.3% 551 

of the uncertainty). The absence of sizeable changes can be explained by the fact that both sets of 552 

weather data feature similar wind speeds over most of the eruption period (see Fig. 4b). The only 553 

major difference (of more than 10 m/s) occurred during phase II, on 29 April below 2000 m a.s.l.  For 554 

this phase, the modelled mass differed by 4.7%, which is small considering the model uncertainties. 555 

We thus conclude that for reanalysis of the Eyjafjallajökull 2010 eruption, using weather data of 556 

higher spatial resolution only effects the overall outcome in a minor way.  However, this result 557 

should not be generalized. A reanalysis of other eruptions, especially short-termed ones, will 558 

probably benefit from a higher spatial resolution of weather data. 559 

Wind effect on plume deflection and plume model predictions  560 

The horizontal deflection of the plume top plotted over the contemporary wind speed at plume top 561 

level, based on ICRA reanalysis weather data (Figure 9a) shows an approximately linear correlation 562 

between these parameters. This is also indicated by a Pearson correlation coefficient (R) of ~0.68. For 563 

Figure 9a, wind speeds at variable elevation were used. To find out for which fixed altitude the wind 564 

speeds correlate best with deflection, the according correlation coefficients were plotted, using wind 565 
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speeds of both ERA5 and ICRA data (Fig. 9b). Next to the raw data (ERA5 1h and ICRA 1h), wind 566 

speeds averaged over 2h and 3h were also used. The best correlation at fixed elevation is observed 567 

for 2h-averaged ERA5 wind speeds at 2900 m a.s.l.  (R = 0.65). At that altitude ICRA wind speeds 568 

correlate slightly less with deflection (R = 0.63), but below 2500 m a.s.l. it is the ICRA data that shows 569 

a better correlation with wind speeds compared to ERA5.  570 

From the models tested, not only Woodhouse and Aubry incorporate a wind-effect. There is an 571 

implicit dependency on wind for the other (simple) models as well, as revealed by Figure 10. There, 572 

the ratio of modelled vs measured mass was plotted over phase-averaged wind speeds. For the 573 

modelled mass, three non-explicitly wind-affected models were investigated in combination with 574 

four strategies: Wilson (Wil, as representative for the simple numerical 0D models), Sparks (Spa) and 575 

Mastin (Mas). Here we selected strategies that do not apply gap reconstruction, to avoid the bias 576 

caused by the fact that there is a large variance in data gaps between the different phases. Two 577 

general trends (indicated by trendlines) can be observed:  578 

1) At low wind speeds the different strategies and models lead to predictions with a large span. 579 

This range decreases for larger wind speeds.   580 

2) With higher wind speeds all shown strategies and non-explicitly wind-affected models tend 581 

to increasingly underestimate the actual erupted mass. While for a wind speed of 14.5 m/s 582 

Mmodelled / Mmeasured averages at around 103%, this ratio drops for 16.2, 19.2 and 36.4 m/s to 583 

79%, 67% and 46%, respectively. Thus, for wind speeds over 20 m/s the model predictions 584 

underestimate the erupted mass on average by more than 40%.   585 

Both trends are also confirmed in Figure 8, which compares the congruency maps of high-wind 586 

eruptive phase Ia (Fig. 8a) with the phase of lowest wind speeds (phase II, Fig. 8b), thus contrasting 587 

the two end members of Fig. 10. Compared to phase Ia, phase II was of much longer duration, and it 588 

was characterized by abundant data gaps, which should result in large differences between gap-589 

reconstructing strategies and those which ignore them. Yet, for phase II, 54 combinations of 590 

strategies and models provide predictions that lie within the uncertainties of the measurements ME 591 

(tiles marked with dark blue color), as opposed to only 14 combinations found for phase Ia. While for 592 

most combinations, the explicitly wind-affected models Woodhouse and Aubry appear to be robust 593 

against this wind effect, for the simple models only very few combinations give predictions close to 594 

the measurements.  595 

Discussion 596 

The comparison between radar and photographic data suggests that the former systematically 597 

underestimated the plume height by 0.5 km. This finding is in contrast to the assessment of webcam 598 
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images analyzed by Arason et al. (2011), which suggested that the radar over-estimated the plume 599 

heights. These webcams were, however, located to the north and west-northwest of the volcano, 600 

while the plume was deflected away from the cameras, towards the south to southeast. Using the 601 

distance to the vents instead of the plume top would therefore lead to an underestimation in 602 

webcam-derived plume heights which might explain the differences with our results (see Fig. 3d). For 603 

example, a plume top of 5 km height that is shifted towards the south with a deflection d of 6 km 604 

would be perceived as being only 3 km high on images produced by the webcam at Þórólfsfell, 605 

located 9 km to the north from the vents. The difference between photos and radar measurements is 606 

mainly a consequence of the radar’s horizontally stepping scanning procedure and the eruptive and 607 

atmospheric circumstances during the 2010 eruption. This implies that such an offset could change in 608 

a future eruption at Eyjafjallajökull, even if the same radar sensor is applied. 609 

The data sets on which the empirical models are based include observations for various situations 610 

regarding wind speed, but it is known that scenarios of weak eruptions under strong wind-conditions 611 

are underrepresented (Mastin 2014). Furthermore, under high wind speeds plume height is reduced, 612 

due to the facts that the plume is bent-over and that there is more efficient turbulent entrainment of 613 

air into the column (Bursik 2001). For the phases of weak activity and relatively low wind speeds, 614 

however, the empirical models by Mastin (phase II with 0.35) and Sparks (phase IV with 0.10) still 615 

have shown to be among the ones with highest prediction success.  616 

As a general finding, the explicitly wind-affected models tend to have larger ranges of uncertainty 617 

and over rather than underestimate the measured mass (see, e.g., Fig. 11). Results from the simple 618 

models fall at the other end of the modelled range, with Wehrmann being the most extreme 619 

example, which tend to systematically underestimate the mass eruption rates, especially under 620 

windy conditions. This discrepancy between estimates from simple and explicitly wind-affected 621 

models under windy conditions is consistent with previous findings (Bursik 2001; Mastin 2014). 622 

When analyzing the entire eruptive period by comparing the strategy-averaged DIs for simple plume 623 

models (see Table 5), the REFIR_15min approach turned out to be the optimal strategy. In contrast, 624 

using REFIR strategies with explicitly wind-affected models lead often to overestimated mass 625 

predictions. These models are affected by larger uncertainties than the simple plume models (see, 626 

e.g., Fig 11), which leads to larger MER predictions, due to the definition of the best estimate by 627 

equation (15). 628 

Of particular interest is also the comparison between phase Ib and III, which were similarly well 629 

covered (9.3 vs 9.2 plume height measurements per hour), had only slightly dissimilar prevailing wind 630 

speeds (19.2 vs 16.2 m/s), but differed in eruptive styles: phase Ib was phreatomagmatic, whereas 631 
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phase III was magmatic. Despite different outcomes for most of the other strategies, the REFIR 632 

strategies appear to be the most robust for both types of eruptive styles. This robustness is 633 

noteworthy, considering that phreatomagmatism is based on thermohydraulic fuel-coolant 634 

interaction processes (Wohletz 1986; Büttner and Zimanowski 1998; Dürig et al. 2020), which 635 

produce more fine-grained ash particles, release larger kinetic energy and generate steam - all of 636 

which are factors that are expected to affect the plume rise behaviour (Koyaguchi and Woods 1996; 637 

Sparks et al. 1997). 638 

An important choice when selecting the plume height data handling strategy is the decision of 639 

whether gap reconstruction is applied or not. In a real-time monitoring scenario (as well as in re-640 

analyses), where radar is the only source for plume heights, it is difficult to distinguish “real” gaps 641 

from data missing for other reasons. For example, it was suggested that the data gap between 15 642 

and 16 April 2010 (within phase Ia) was real, and a consequence of low plume heights (Mastin 2014). 643 

According to our results, however, the optimal strategies for that phase are those that apply gap 644 

reconstruction (e.g., REFIR_15min), indicating that the gap was not reflecting the status of the actual 645 

plume. This is corroborated by photographs taken on that day, that prove the existence of a plume in 646 

that period. In contrast, our findings for phase II indicate that the gaps during that phase were real. 647 

In such scenarios of very weak eruptive activities, strategies with large timebases (such as SH_phase) 648 

or applied gap reconstruction (such as SM_6h_int) result in overestimated mass predictions, 649 

especially for explicitly wind-affected models. For modelling long-lasting eruptions with diverse 650 

episodes, comparable to Eyjafjallajökull 2010, we would therefore recommend a mixture of 651 

strategies, tailored to phase and model-type.  652 

Similar to applying gap reconstruction, using a too large timebase result in real data gaps being 653 

missed. Using a too short timebase, on the other hand, might lead to errors when monitoring an 654 

evolving plume that has not reached stable buoyancy yet. Since this would violate the steady state 655 

assumption of the models, the model predictions would not be reliable. We consider the latter 656 

effect, however, as insignificant, when modelling a long-lasting eruption like Eyjafjallajökull 2010. 657 

A key finding of this study is the dominating influence of the wind speed on the prediction quality of 658 

plume height data for mass eruption rates, at least for moderate eruptions with bent-over plumes. 659 

This is highlighted by the results of the phase-specific comparison of plume height data handling 660 

strategies (Table 5) and illustrated in Figures 8 and 10. Phase Ia is characterized by the highest wind 661 

speeds, and despite having a good data coverage (8.1 measurements per hour, see Table 1) the 662 

strategies are on average considerably less successful than for phases Ib and III. All our results 663 

indicate that for a moderate-to-weak eruption like Eyjafjallajökull 2010, it is increasingly challenging 664 

for wind speeds exceeding ~20 m/s to find combinations of plume models and data handling 665 
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strategies with which the mass eruption rate can be accurately predicted in real-time. This inference 666 

highlights how important it is to monitor such eruptions in real-time and use the ‘optimal’ 667 

combination of plume height data handling strategy and plume models. 668 

The strategies presented were tested by focusing only on the best MER estimates, without 669 

considering the ranges of uncertainty (with the REFIR strategies being notable exceptions). These can 670 

become substantial and exceed the span of the measured mass by several orders of magnitude 671 

(Figure 11, for uncertainty ranges in modelled MERs, see also online resource 5). The uncertainties 672 

for Mmodelled, as defined by equation (19), depend on model, timebase, strategy and the relative data 673 

coverage of the studied period. For example, when considering the entire eruption period, the 674 

uncertainties for SH_3h_int increase by 9 - 12% (depending on the model) compared to SH_3h_gap 675 

(15 - 17% for SM_3h_int vs SH_3h_gap). For phase II alone, the uncertainty ranges between the two 676 

strategies increase by up to 41% (up to 43% for for SM_3h_int vs SH_3h_gap). 677 

Selecting a short timebase has a significant effect on the modelled mass uncertainties. For example, 678 

compared to the 3h-timebase, the REFIR uncertainties for a timebase of 15 minutes is reduced by up 679 

to 24% when considering the whole eruption period. For phase IV, this decrease reaches 32.5%. The 680 

largest uncertainties are found for the largest possible timebase, with strategy SH_phase (see Fig. 681 

11b).  682 

It is important to note that our error estimates did not consider model-inherent uncertainties (an 683 

example for the uncertainties of the Mastin model is shown in Fig. 11a). For some strategies, the 684 

model uncertainties could be larger than the ranges defined by equation (19). A model-strategy 685 

combination with a large DI does not necessarily provide a “wrong” prediction, since its uncertainty 686 

interval could (at least partly) overlap with the measured range. On the other hand, combinations 687 

that result in predictions affected by a large uncertainty range are unfavorable for real-time 688 

monitoring purposes. Our approach is optimized for finding the model-strategy pairs which provide 689 

the best estimates that are closest to the measurement, but we note that this is not the only method 690 

to assess the quality of strategies and models, and more advanced comparison methods might also 691 

consider the range and overlap of modelled mass uncertainties. 692 

The radar data by Arason et al. (2011) has been used by a plethora of studies on the 2010 ash plume 693 

of Eyjafjallajökull (Kaminski et al. 2011; Bursik et al. 2012; Gudmundsson et al. 2012; Degruyter and 694 

Bonadonna 2012; Devenish 2013; Ripepe et al. 2013; Woodhouse et al. 2013; Mastin 2014; Dürig et 695 

al. 2015b; Dioguardi et al. 2020). Our suggested height correction still lies within the reported error 696 

margins, but when used as input for plume models it will increase the MER predictions. Due to our 697 

definition of uncertainties by equation (19), for strategies that do not apply height reconstruction, 698 
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the plume height uncertainties are only dependent on the radar height uncertainty itself. In Figure 699 

11b, the effect of the height correction on the modelled mass is represented by the distance 700 

between the lower error bar and the best estimate for these strategies (e.g., all SM-strategies).  701 

In their study on Eyjafjallajökull, Woodhouse et al. (2013) applied an SH strategy with a timebase of 702 

1h, but using the maximum plume height within each block instead of plume height averages. We 703 

note that the 10% plume height reduction applied to convert H into h for Woodhouse is in the same 704 

range as the height correction applied to the radar data. We therefore used comparable plume 705 

heights as input as Woodhouse et al. (2013). Using the maximum plume heights per block instead of 706 

averages resulted in MER predictions for phase Ia that exceeded our estimates by an order of 707 

magnitude. We suggest that, when using Woodhouse to re-model the Eyjafjallajökull 2010 eruption, 708 

using data handling strategies like SH_3h_gap with block-averaged plume heights might be the more 709 

suitable strategy. 710 

The SH strategies are the most commonly used for plume modelling  (Kaminski et al. 2011; Bursik et 711 

al. 2012; Degruyter and Bonadonna 2012; Woodhouse et al. 2013; Mastin 2014; Dürig et al. 2015b), 712 

and our findings indicate that these strategies (especially SH_3h_gap) are often a good choice when 713 

using explicitly wind-affected models, but they are far less successful with simple models. From the 714 

dynamic sampling strategies, which are typically used for real-time monitoring, DHM strategies prove 715 

to provide best results for explicitly wind-affected models. When used with simple models, however, 716 

the optimal choice is the REFIR strategy.  717 

 718 

Conclusions  719 

Focusing on the different eruptive phases of the Eyjafjallajökull 2010 eruption, we used aerial and 720 

ground-based photographs of the plume together with ground-based measurements of the erupted 721 

mass to study and compare the predictive qualities of eight plume models in combination with 22 722 

data handling strategies. Although the latter has a significant influence on the model outcome, their 723 

influence has, to our knowledge, not yet been studied to this extent before. 724 

The best re-analysis results for simple (non-explicitly wind-affected) plume models are in most cases 725 

obtained by using strategies implemented in the software REFIR (Real-time Eruption source 726 

parameters FutureVolc Information and Reconnaissance system), which apply dynamic sampling in 727 

the form of a moving average and consider the plume height uncertainties. The only exception is 728 

found for phase II, where the eruptive activity was weak, and the plume height was under the 729 

detection limit of the radar for a considerable amount of time, causing data gaps in the records. 730 
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There, interpolating strategies generate ghost-data points, which lead to an overestimation of the 731 

erupted mass. Under such conditions, strategies without gap reconstruction and with long timebases 732 

(such as SH_phase or SM_6h_gap) are more reliable. For explicitly wind-affected models, the best 733 

strategies were found to be static sampling strategies with short timebases and without gap 734 

reconstruction (such as SH_3h_gap). 735 

Our findings suggest that no single model has always the best answers, and different models and 736 

data handling strategies work best under different plume and data conditions. Which model and 737 

strategy to choose for optimal prediction results depends on data coverage, eruption intensity and, 738 

according to our findings from Eyjafjallajökull, to a lesser extent on fragmentation mechanism (e.g., 739 

magmatic vs phreatomagmatic). The dominant factor on the prediction quality, however, was found 740 

to be the wind speed. The higher the wind speed, the more the non-explicitly wind-affected models 741 

tend to underestimate the MER. Conversely, the explicitly wind-affected Woodhouse model 742 

overestimates it, when applying the REFIR strategies. Namely for wind speeds over 20 m/s, only a 743 

few combinations of data handling strategies and plume models provide accurate predictions when 744 

monitoring an Eyjafjallajökull 2010 – type of eruption. 745 

A possible solution for obtaining accurate estimates in real time for such long-term eruptions of 746 

variable and moderate intensity under varying wind speeds would therefore be to not rely on a single 747 

combination of data handling strategy and plume model, but to be able to use a range of such 748 

combinations, thus providing the possibility to adapt to the scenario monitored.  749 

 750 

  751 
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Tables 752 

Table 1:  753 

Modelled eruptive phases and ground truth. Modelled phases of the 2010 Eyjafjallajökull eruption 754 

are listed, together with the estimated ranges of erupted airborne tephra mass, as reported in 755 

Gudmundsson et al. (2012). The errors of erupted mass are denoted ME. In our study these values 756 

were used as ground truth for testing the model predictions with different plume height data 757 

handling strategies. Additional columns indicate duration, number of recorded radar measurements, 758 

data points (i.e., plume height measurements) per hour and time-averaged wind speed for each 759 

phase. Computation of wind speeds were based on ERA5 reanalysis data for the (radar-detected) 760 

plume heights. 761 

phase 
from 

(dd/mm) 
until 

(dd/mm/yy) 
duration 

(min) 

erupted 
mass ± 

ME (×1010 

kg) 

number of 
radar 

measurements 

data 
points 

per 
hour 

wind 
speed 
m/s 

Ia 14/04 16/04/10 3785 
9.80 ± 
2.10 

511 8.1 36.4 

Ib 17/04 18/04/10 2165 
3.50 ± 
0.98 

335 9.3 19.2 

I 
(total) 

14/04 18/04/10 5945 
13.30 ± 

3.08 
846 8.5 30.1 

II 18/04 4/05/10 23765 
4.20 ± 
1.40 

1005 2.5 11.8 

III 5/05 17/05/10 18725 
18.90 ± 

4.90 
2858 9.2 16.2 

IV 18/05 21/05/10 4950 
1.40 ± 
0.42 

430 5.2 14.5 

all 14/04 21/05/10 53385 37.8 ± 9.8 5139 5.8 15.6 

  762 
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Table 2:  763 

Tested data handling strategies. The columns list the aspects that were varied: sampling method, 764 

void reconstruction, gap reconstruction, timebase (i.e., duration of a block), time stepping and Y-765 

correction. 766 

Strategy sampling void 
reconstructed 

variable 

gap 
reconstructed 

variable 

timebase 
 

time 
step 

Y-
correction 

S_5min_gap static - n. a. - - none - 5 min 5 min - none - 

SH_phase static height - n. a. - phase phase - none - 

SH_6h_gap static height - none - 6 h 6 h - none - 

SH_Y6h_gap static height - none - 6 h 6 h Yes 

SH_3h_gap static height - none - 3 h 3 h - none - 

SH_Y3h_gap static height - none - 3 h 3 h Yes 

SH_6h_int static height height 6 h 6 h - none - 

SH_Y6h_int static height height 6 h 6 h yes 

SH_3h_int static height height 3 h 3 h - none - 

SH_Y3h_int static height height 3 h 3 h yes 

SH_5min_int static - n. a. - height 5 min 5 min - none - 

SM_6h_gap static MER - none - 6 h 6 h - none - 

SM_3h_gap static MER - none - 3 h 3 h - none - 

SM_6h_int static MER MER 6 h 6 h - none - 

SM_3h_int static MER MER 3 h 3 h - none - 

SM_5min_int static - n. a. - MER 5 min 5 min - none - 

DHM_3h dynamic height MER 3 h 5 min - none - 

DHM_1h dynamic height MER 1 h 5 min - none - 

REFIR_3h dynamic height MER 3 h 5 min - none - 

REFIR_1h dynamic height MER 1 h 5 min - none - 

REFIR_30min dynamic height MER 30 min 5 min - none - 

REFIR_15min dynamic height MER 15 min 5 min - none - 

  767 



27 
 

Table 3: 768 

Results for Y-values, based on 49 static 6h-blocks with a data coverage of 60/72 or higher. Numerical 769 

0D models stand for Wilson, Wehrmann, Scollo and Andronico models. For Woodhouse, ERA5 770 

weather data was used. Y-correction strategies multiplied the predicted mass with 1/Y. 771 

  6h 3h 
  mean stdev mean stdev 

numerical 0D models 

average 0.90 0.10 0.91 0.09 

median 0.95 0.25 0.95 0.19 

maximum 2.36 2.15 2.06 1.45 

Sparks 

average 0.91 0.09 0.92 0.08 

median 0.96 0.24 0.95 0.19 

maximum 2.29 2.00 2.01 1.36 

Mastin 

average 0.89 0.11 0.91 0.10 

median 0.95 0.26 0.95 0.20 

maximum 2.44 2.31 2.12 1.55 

Woodhouse 

average 0.91 0.09 0.92 0.09 

median 0.97 0.26 0.95 0.19 

maximum 2.37 2.13 2.08 1.46 

 772 

 773 

Table 4: 774 

List of discongruence indices (DIs). A DI of 0 refers to a model-estimate, which lies within the range of 775 

measured mass according to Gudmundsson et al. (2012). This range is illustrated by red error bars in 776 

Fig. 5 and Fig. 6 and specified by the uncertainty ME. A DI of 0 is therefore congruent with the 777 

“ground truth”. The larger the discongruence index, the more the model-output deviates from the 778 

ground truth.  779 

Discongruence 
Index (DI) 

minimum deviation from measured 
mass  

maximum deviation from measured 
mass 

0 0 ME 

1 ME 1.5 ME 

2 1. 5 ME 2 ME 

3 2 ME 2.5 ME 

4 2.5 ME 3 ME 

5 3 ME > 3 ME 

 780 

781 
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Table 5: 782 

Average discongruence indices listed by data handling strategy and reference period. The first value 783 

is the resulting DI for the six simple models tested (Wilson, Andronico, Scollo, Wehrmann, Sparks, 784 

Mastin), the second column presents the averages for the two wind-affected models (Woodhouse, 785 

Aubry). The smaller the value, the more often fits the modelled result with the measured mass. 786 

Values representing the most successful strategies for a phase are printed in bold.  787 

Row Ia Ib II III IV all average 

S_5min_gap 3.0 0.5 1.5 0 2.8 1.0 0.8 0 2.3 0 1.7 0 2.0 0.3 

SH_phase 3.0 0.5 2.0 0 0.3 2.0 1.3 0 0.5 1.0 1.0 1.0 1.4 0.8 

SH_6h_gap 2.8 0.5 1.5 0 0.3 1.5 0.5 0 0.5 1.0 1.3 0 1.2 0.5 

SH_Y6h_gap 2.5 0.5 1.3 0.5 0.5 1.5 0.5 0.5 0.5 1.0 0.7 1.0 1.0 0.8 

SH_3h_gap 3.5 0.5 1.7 0 0.5 0.5 0.5 0 0.5 1.0 1.3 0 1.3 0.3 

SH_Y3h_gap 2.8 1.0 1.3 0 0.5 0.5 0.5 0 0.5 1.0 1.2 0 1.1 0.4 

SH_6h_int 2.8 0.5 1.5 0 0.7 2.0 0.5 0 0.5 1.0 1.0 0 1.2 0.6 

SH_Y6h_int 2.5 0.5 1.3 0.5 0.7 2.5 0.5 0.5 0.3 1.5 0.5 1.0 1.0 1.1 

SH_3h_int 3.0 1.0 1.7 0 0.8 2.0 0.5 0 0.5 1.0 0.8 0 1.2 0.7 

SH_Y3h_int 2.8 0.5 1.3 0 0.7 2.0 0.5 0.5 0.3 1.5 0.5 1.0 1.0 0.9 

SH_5min_int 2.7 1.0 1.3 0 0.7 2.0 0.5 0 0.5 1.0 0.5 1.0 1.0 0.8 

SM_6h_gap 2.2 0.5 0.5 0.5 0.3 1.5 0.5 0 0.5 1.0 0.5 0.5 0.8 0.7 

SM_3h_gap 2.8 1.0 0.7 0.5 0.5 0.5 0.5 0 0.5 1.0 0.8 0 1.0 0.5 

SM_6h_int 2.2 0.5 0.5 0.5 0.7 2.5 0.5 0 0.3 1.5 0.5 1.0 0.8 1.0 

SM_3h_int 2.5 0.5 0.7 0.5 0.8 2.0 0.5 0 0.3 2.0 0.5 1.0 0.9 1.0 

SM_5min_int 2.5 0.5 1.3 0 0.7 2.0 0.5 0 0.5 1.0 0.5 1.0 1.0 0.8 

DHM_6h 3.0 1.0 1.7 0 0.7 2.0 0.5 0 0.5 1.0 0.8 0 1.2 0.7 

DHM_3h 3.0 1.0 1.7 0 0.7 2.0 0.5 0 0.5 1.0 0.7 0 1.2 0.7 

REFIR_3h 1.7 1.0 0.5 1.0 1.0 3.0 0.3 1.0 0.5 2.0 0.3 1.0 0.7 1.5 

REFIR_15min 1.7 0.5 0.5 1.0 0.8 2.5 0.3 1.0 0.2 2.0 0.5 1.0 0.7 1.3 

average 2.7 0.7 1.2 0.3 0.7 1.8 0.5 0.2 0.5 1.2 0.8 0.5 1.1 0.8 

 788 

 789 
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Table 6: 791 

Average discongruence indices over all strategies, listed by reference period and plume model.  792 

Row Wilson Wehrmann Scollo Andronico Sparks Mastin Woodhouse Aubry average 

Ia 1.55 4.90 2.20 1.85 1.85 3.55 0.95 0.40 2.16 

Ib 0.40 3.10 0.70 0.70 0.70 1.75 0.10 0.40 0.98 

II 1.05 0.80 0.70 0.70 0.80 0.35 1.10 2.45 0.99 

III 0.10 2.00 0.10 0.05 0.05 0.95 0.10 0.25 0.45 

IV 0.10 1.85 0.10 0.10 0.10 1.00 1.10 1.25 0.70 

all 0.05 2.55 0.45 0.20 0.15 1.30 0.55 0.50 0.72 

average 0.54 2.53 0.71 0.60 0.61 1.48 0.65 0.88  
 793 
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Figures 795 

Figure 1 796 

Examples of photos that were used to validate the plume height records from radar. a) Aerial picture 797 

of the Eyjafjallajökull plume, taken on 14 April 2010 at 10:20 UTC. b) This photo was taken 5 minutes 798 

later from a different angle. Since the GPS coordinates of the plane were logged, the horizontal 799 

location of the plume top could be constrained by triangulation. At that time, the plume top reached 800 

an altitude of (6.0 ± 0.3) km above vent. c) Example of a photo taken on the ground, from a distance 801 

of 29 km from the vent. This picture dates from 10 May (19:50 UTC), when the plume was deflected 802 

by 1.7 km towards 193° (SSW), with its top reaching an elevation of (2.2± 0.2) km above vent. d) This 803 

photo was taken on the last day of the eruption (21 May) at 18:00 UTC. In this case the elevation of 804 

the plume was directly assessed by flying at the same elevation as the plume top and using the on-805 

board altimeter. The aircraft flew at 12,000ft a.s.l., which translates into a plume height of (2.3 ± 0.1) 806 

km. Photo credits: Th. Högnadóttir (a, b); M.T. Gudmundsson (c, d).  807 

  808 



31 
 

Figure 2 809 

The radar record of the 2010 Eyjafjallajökull eruption. Data from Arason et al. (2011). a) Data 810 

coverage of 3h- (blue) and 6h -(red) blocks. For example, a 6h-block with 50% data coverage 811 

represents a set of 72 5-minute slots, of which 36 contain data. b) Timing of data gaps (i.e. blocks 812 

that are completely empty). c) Increasing the time step (i.e., block width), leads to a reduction of 813 

total overall gap time. d) Histograms show that data coverage of the blocks differed between the 814 

eruptive phases. e) Voids in the plume height records are reconstructed by filling them with the 815 

block's mean value (orange bars). f) Reconstructed gaps (orange bars) are obtained by interpolation. 816 
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Figure 3 818 

Plume height validation by means of photographic plume analysis. a) Radar-based plume height 819 

records of the Eyjafjallajökull 2010 eruption were compared with elevation data retrieved from 820 

photos. b) Photo plume heights are systematically shifted upward by 0.5 km relative to radar plume 821 

heights. c) This means that, statistically, the radar signal underestimated the actual plume height by 822 

0.5 km. d) Due to windy conditions, the ash plume showed at times a considerable deflection d, 823 

which would lead to an underestimation of the plume if the distance to the plume top is assumed to 824 

equal the distance to the vent s. 825 

 826 
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Figure 4 828 

Wind speeds above Eyjafjallajökull during the 2010 eruption. a) Plume height (red curve) is plotted 829 

together with altitude-specific wind speeds above the vent, based on ERA5 reanalysis data. Altitude 830 

refers to sea level. Vertical dashed white lines mark margins of eruptive phases. b) Overall, the 831 

absolute differences in wind speeds between ICRA and ERA5 were relatively small, with only sporadic 832 

disparities, mainly at ground level on day 14. 833 
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Figure 5 835 

Modelled erupted mass. Erupted mass is computed by multiplying the modelled mass eruption rates 836 

by the block duration and summing the results over the reference period (here: the entire eruption). 837 

The range of measured erupted mass as reported by Gudmundsson et al. (2012) (see also Table 1) is 838 

displayed as red error bar with width ME. a) For each of the 8 tested models, 6h-averaged plume 839 

heights were used as input with void but no gap reconstruction, thus applying strategy SH_3h_gap 840 

(see Table 2). Wind speeds from ERA5 were used for Woodhouse and Aubry. b) Results for 841 

S_5min_gap and SH plume height strategies applied to the Wilson model. c) Results for Wilson with 842 

SM strategies. c) Predicted mass by Wilson with DHM and two REFIR strategies. 843 

 844 

 845 
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Figure 6 847 

Modelled curves of erupted mass for each eruptive phase, applying strategy SH_3h_gap for eight 848 

models. The range of measured erupted mass (ground truth) is indicated with a red error bar. 849 

Reference periods are: a) phase I, b) phase II, c) phase III, d) phase IV. 850 

 851 
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Figure 7 853 

Phase-specific comparisons of modelled versus measured mass. Results for six strategies (marked by 854 

different symbols) are presented for the whole eruption (all) and individual phases. The plots show 855 

the model-specific outcomes for: a) Wilson, b) Mastin, c) Woodhouse d) Aubry (with using wind 856 

speeds from ERA5 for both wind-affected models). The green lines indicate the range of erupted 857 

mass, interpolated according to ground measurements. A symbol lying within this corridor indicates 858 

that the respective strategy and plume model provides a 'successful' prediction under the tested 859 

eruptive conditions. 860 

 861 
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Figure 8 863 

Congruency maps for combinations of strategies and models. ERA5 wind speeds were used for 864 

Woodhouse and Aubry. Each cell’s colour indicates how well the estimate of a strategy and model 865 

pair fits with the measured data. Dark blue tiles indicate predictions that coincide with 866 

measurements. a) Congruency map of all strategies and models for phase Ia, which was 867 

characterized by the highest wind speeds. b) Congruency map for phase II, the phase with the most 868 

gaps in the radar records.  869 
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Figure 9 872 

Wind-induced deflection of plume top. a) Photo-derived deflection of plume top is plotted versus 873 

wind speeds at maximum plume height, according to ICRA reanalysis data. The data plots with a 874 

Pearson correlation coefficient of 0.68. b) Correlation between deflection of the plume top and wind 875 

speeds at different altitude levels (elevation above sea level).  876 

 877 

 878 
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Figure 10 880 

Wind-effect on simple (i.e., non-explicitly wind-affected) model predictions. Using four data handling 881 

strategies for three models (Wil: Wilson, Spa: Sparks, Mas: Mastin), the ratio of modelled vs 882 

measured mass is plotted over phase-averaged ERA5 wind speeds. The black curves serve for 883 

visualization of what appears to be a general trend: the stronger the wind, the more the simple 884 

plume models tend to underestimate the mass eruption rate, regardless of the applied strategy. 885 

 886 
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Figure 11 888 

Ranges of uncertainty for modelled masses. a) Strategy-specific uncertainties for Mastin and 889 

Woodhouse, when modelling the complete eruption period (all). For most strategies, the effect of 890 

plume height errors according to equation (19) is larger than the model uncertainties (blue-shaded 891 

background for Mastin). b) Ranges of predicted mass uncertainties for strategy SH_phase for all 892 

studied eruptive phases and the complete eruption (all). Although depending on model and phase, 893 

for this strategy the error bars are always considerably larger than the range of measured mass, due 894 

to the large timebase. 895 

 896 
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eruptive phases. Rows show model results. Next to the best estimates, the range of uncertainty is 927 

specified by providing the minimum (min) and maximum values (max). 928 

Online Resource 6 (.jpg): 929 

Congruency map for complete eruption (all). 930 

Online Resource 7 (.jpg): 931 

Phase-specific congruency maps for all strategies tested. 932 

Online Resource 8 (.tif): 933 

Phase-specific MER predictions for Woodhouse with REFIR_3h, using wind speeds of ERA 5 and ICRA. 934 

In addition to 1h-timed wind speeds, 3h-averaged wind speeds were tested. 935 
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