8,444 research outputs found

    Medium Modification of The Pion-Pion Interaction at Finite Density

    Get PDF
    We discuss medium modifications of the unitarized pion-pion interaction in the nuclear medium. We incorporate both the effects of chiral symmetry restoration and the influence of collective nuclear pionic modes originating from the p-wave coupling of the pion to delta-hole configurations. We show in particular that the dropping of the sigma meson mass significantly enhances the low energy structure created by the in-medium collective pionic modes.Comment: 26 pages, 7 figures included, Latex fil

    Optical and Infrared Photometry of the Unusual Type Ia Supernova 2000cx

    Get PDF
    We present optical and infrared photometry of the unusual Type Ia supernova 2000cx. With the data of Li et al. (2001) and Jha (2002), this comprises the largest dataset ever assembled for a Type Ia SN, more than 600 points in UBVRIJHK. We confirm the finding of Li et al. regarding the unusually blue B-V colors as SN 2000cx entered the nebular phase. Its I-band secondary hump was extremely weak given its B-band decline rate. The V minus near infrared colors likewise do not match loci based on other slowly declining Type Ia SNe, though V-K is the least ``abnormal''. In several ways SN 2000cx resembles other slow decliners, given its B-band decline rate (Delta m_15(B) = 0.93), the appearance of Fe III lines and weakness of Si II in its pre-maximum spectrum, the V-K colors and post-maximum V-H colors. If the distance modulus derived from Surface Brightness Fluctuations of the host galaxy is correct, we find that the rate of light increase prior to maximum, the characteristics of the bolometric light curve, and the implied absolute magnitude at maximum are all consistent with a sub-luminous object with Delta m_15(B) ~ 1.6-1.7 having a higher than normal kinetic energy.Comment: 46 pages, 17 figures, to be published in Publications of the Astronomical Society of the Pacifi

    Ultraviolet Light Curves of Supernovae with Swift Uvot

    Full text link
    We present ultravioliet (UV) observations of supernovae (SNe) obtained with the UltraViolet/Optical Telescope (UVOT) on board the Swift spacecraft. This is the largest sample of UV light curves from any single instrument and covers all major SN types and most subtypes. The UV light curves of SNe Ia are fairly homogenous while SNe Ib/c and IIP show more variety in their light curve shapes. The UV-optical colors clearly differentiate SNe Ia and IIP, particularly at early times. The color evolution of SNe IIP, however, makes their colors similar to SNe Ia at about 20 days after explosion. SNe Ib/c are shown to have varied UV-optical colors. The use of UV colors to help type SNe will be important for high redshift SNe discovered in optical observations. These data can be added to ground based optical and near infrared data to create bolometric light curves of individual objects and as checks on generic bolometric corrections used in the absence of UV data. This sample can also be compared with rest-frame UV observations of high redshift SNe observed at optical wavelengths.Comment: 11 pages, including 8 figures. Submitted to A

    Near-Ultraviolet Properties of a Large Sample of Type Ia Supernovae as Observed with the Swift UVOT

    Get PDF
    We present ultraviolet (UV) and optical photometry of 26 Type Ia supernovae (SNe~Ia) observed from March 2005 to March 2008 with the NASA {\it Swift} Ultraviolet and Optical Telescope (UVOT). The dataset consists of 2133 individual observations, making it by far the most complete study of the UV emission from SNe~Ia to date. Grouping the SNe into three subclasses as derived from optical observations, we investigate the evolution of the colors of these SNe, finding a high degree of homogeneity within the normal subclass, but dramatic differences between that group and the subluminous and SN 2002cx-like groups. For the normal events, the redder UV filters on UVOT (uu, uvw1uvw1) show more homogeneity than do the bluer UV filters (uvm2uvm2, uvw2uvw2). Searching for purely UV characteristics to determine existing optically based groupings, we find the peak width to be a poor discriminant, but we do see a variation in the time delay between peak emission and the late, flat phase of the light curves. The UV light curves peak a few days before the BB band for most subclasses (as was previously reported by Jha et al. 2006a), although the SN 2002cx-like objects peak at a very early epoch in the UV. That group also features the bluest emission observed among SNe~Ia. As the observational campaign is ongoing, we discuss the critical times to observe, as determined by this study, in order to maximize the scientific output of future observations.Comment: Accepted to Astrophysical Journa

    Quasi-Elastic Scattering in the Inclusive (3^3He, t) Reaction

    Get PDF
    The triton energy spectra of the charge-exchange 12^{12}C(3^3He,t) reaction at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out region. Considering that this region is mainly populated by the charge-exchange of a proton in 3^3He with a neutron in the target nucleus and the final proton going in the continuum, the cross-sections are written in the distorted-wave impulse approximation. The t-matrix for the elementary exchange process is constructed in the DWBA, using one pion- plus rho-exchange potential for the spin-isospin nucleon- nucleon potential. This t-matrix reproduces the experimental data on the elementary pn \rightarrow np process. The calculated cross-sections for the 12^{12}C(3^3He,t) reaction at 2o2^o to 7o7^o triton emission angle are compared with the corresponding experimental data, and are found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at [email protected], submitted to Phy.Rev.

    The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    Get PDF
    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w=P/rho c^2 for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z~0.5 +- 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al, 2007.Comment: Submitted to ApJ. Companion paper to Wood-Vasey et al (2007). Electronic tables available at http://www.ctio.noao.edu/essence/wresult
    corecore