325 research outputs found

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    An approach to analyse the specific impact of rapamycin on mRNA-ribosome association

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background.</p> <p>Methods</p> <p>We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out). For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation.</p> <p>Results</p> <p>High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug.</p> <p>Conclusion</p> <p>The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of a particular drug in a living cell.</p

    mTOR signaling in glioblastoma: lessons learned from bench to bedside

    Get PDF
    Phosphatidyl-inositol-3 kinases (PI3Ks) constitute a family of intracellular lipid kinases that are frequently hyperactivated in glioblastoma. The PI3K complex links growth factor signaling with cellular proliferation, differentiation, metabolism, and survival. Mammalian target of rapamycin (mTOR) acts both as a downstream effector and upstream regulator of PI3K, thus highlighting its importance in glioblastoma. This review highlights laboratory and clinical evidence of mTOR's role in glioblastoma. Mechanisms of escape from mTOR inhibition are also discussed, as well as future clinical strategies of mTOR inhibition

    Immunohistochemical assessment of protein phosphorylation state: the dream and the reality

    Get PDF
    The development of phosphorylation state-specific antibodies (PSSAs) in the 1980s, and their subsequent proliferation promised to enable in situ analysis of the activation states of complex intracellular signaling networks. The extent to which this promise has been fulfilled is the topic of this review. I review some applications of PSSAs primarily in the assessment of solid tumor signaling pathway activation status. PSSAs have received considerable attention for their potential to reveal cell type-specific activation status, provide added prognostic information, aid in the prediction of response to therapy, and most recently, demonstrate the efficacy of kinase-targeted chemotherapies. However, despite some successes, many studies have failed to demonstrate added value of PSSAs over general antibody immunohistochemistry. Moreover, there is still a large degree of uncertainty about the interpretation of complex and heterogeneous staining patterns in tissue samples and their relationship to the actual phosphorylation states in vivo. The next phase of translational research in applications of PSSAs will entail the hard work of antibody validation, gathering of detailed information about epitope-specific lability, and implementation of methods for standardization

    Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial

    Get PDF
    BACKGROUND: Addition of temozolomide (TMZ) to radiotherapy (RT) improves overall survival (OS) in patients with glioblastoma (GBM), but previous studies suggest that patients with tumors harboring an unmethylated MGMT promoter derive minimal benefit. The aim of this open-label, phase III CheckMate 498 study was to evaluate the efficacy of nivolumab (NIVO) + RT compared with TMZ + RT in newly diagnosed GBM with unmethylated MGMT promoter. METHODS: Patients were randomized 1:1 to standard RT (60 Gy) + NIVO (240 mg every 2 weeks for eight cycles, then 480 mg every 4 weeks) or RT + TMZ (75 mg/m2 daily during RT and 150-200 mg/m2/day 5/28 days during maintenance). The primary endpoint was OS. RESULTS: A total of 560 patients were randomized, 280 to each arm. Median OS (mOS) was 13.4 months (95% CI, 12.6 to 14.3) with NIVO + RT and 14.9 months (95% CI, 13.3 to 16.1) with TMZ + RT (hazard ratio [HR], 1.31; 95% CI, 1.09 to 1.58; P = .0037). Median progression-free survival was 6.0 months (95% CI, 5.7 to 6.2) with NIVO + RT and 6.2 months (95% CI, 5.9 to 6.7) with TMZ + RT (HR, 1.38; 95% CI, 1.15 to 1.65). Response rates were 7.8% (9/116) with NIVO + RT and 7.2% (8/111) with TMZ + RT; grade 3/4 treatment-related adverse event (TRAE) rates were 21.9% and 25.1%, and any-grade serious TRAE rates were 17.3% and 7.6%, respectively. CONCLUSIONS: The study did not meet the primary endpoint of improved OS; TMZ + RT demonstrated a longer mOS than NIVO + RT. No new safety signals were detected with NIVO in this study. The difference between the study treatment arms is consistent with the use of TMZ + RT as the standard of care for GBM.ClinicalTrials.gov NCT02617589

    Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO)

    Get PDF
    To investigate the role of gefitinib in patients with high-grade gliomas (HGGs), a phase II trial (1839IL/0116) was conducted in patients with disease recurrence following surgery plus radiotherapy and first-line chemotherapy. Adult patients with histologically confirmed recurrent HGGs following surgery, radiotherapy and first-line chemotherapy, were considered eligible. Patients were treated with gefitinib (250 mgday−1) continuously until disease progression. The primary end point was progression-free survival at 6 months progression-free survival at 6 months (PFS-6). Tissue biomarkers (epidermal growth factor receptor (EGFR) gene status and expression, phosphorylated Akt (p-Akt) expression) were assessed. Twenty-eight patients (median age, 55 years; median ECOG performance status, 1) were enrolled; all were evaluable for drug activity and safety. Sixteen patients had glioblastoma, three patients had anaplastic oligodendrogliomas and nine patients had anaplastic astrocytoma. Five patients (17.9%, 95% CI 6.1–36.9%) showed disease stabilisation. The overall median time to progression was 8.4 (range 2–104+) weeks and PFS-6 was 14.3% (95% CI 4.0–32.7%). The median overall survival was 24.6 weeks (range 4–104+). No grade 3–4 gefitinib-related toxicity was found. Gefitinib showed limited activity in patients affected by HGGs. Epidermal growth factor receptor expression or gene status, and p-Akt expression do not seem to predict activity of this drug

    Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways

    Get PDF
    UNLABELLED Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293

    PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment

    Get PDF
    Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM). However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C), an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization
    corecore