62 research outputs found

    Driving of Outer Belt Electron Loss by Solar Wind Dynamic Pressure Structures : Analysis of Balloon and Satellite Data

    Get PDF
    We present observations of similar to 10-60 min solar wind dynamic pressure structures that drive large-scale coherent similar to 20-100 keV electron loss from the outer radiation belt. A combination of simultaneous satellite and Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) observations on 11-12 January 2014 shows a close association between the pressure structures and precipitation as inferred from BARREL X-rays. Specifically, the structures drive radial ExB transport of electrons up to 1 Earth radii, modulating the free electron energy available for low-frequency plasmaspheric hiss growth, and subsequent hiss-induced loss cone scattering. The dynamic pressure structures, originating near the Sun and commonly observed advecting with the solar wind, are thus able to switch on scattering loss of electrons by hiss over a large spatial scale. Our results provide a direct link between solar wind pressure fluctuations and modulation of electron loss from the outer radiation belt and may explain long-period modulations and large-scale coherence of X-rays commonly observed in the BARREL data set. Plain Language Summary The Earth's low-density magnetosphere is a region of enclosed magnetic field lines that contains energetic electrons ranging from eV to MeV energies. These populations can be greatly enhanced in response to solar driving. Following enhancements, energetic electron populations are depleted on timescales of hours to days by various processes. One important depletion process occurs when an electromagnetic plasma wave called plasmaspheric hiss, which exists within a high plasma density region called the plasmasphere and its (occasional) radial extension called the plume, scatters energetic electrons into the atmosphere. In this paper, we show that these hiss waves can be switched on by compressions of the magnetosphere which occur in response to similar to 1 hr long pressure structures in the solar wind. These structures originate at or near the Sun and are very common in the solar wind at 1 AU. The newly excited hiss waves scatter electrons into the atmosphere where they are observed on balloon-borne X-ray detectors. Our results suggest that magnetospheric models that predict the loss of electrons from hiss waves may be improved by consideration of solar wind pressure-driven dynamics.Peer reviewe

    Selection of Suitable Reference Genes for RT-qPCR Analyses in Cyanobacteria

    Get PDF
    Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR) is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works

    The Influence of pCO2 and Temperature on Gene Expression of Carbon and Nitrogen Pathways in Trichodesmium IMS101

    Get PDF
    Growth, protein amount, and activity levels of metabolic pathways in Trichodesmium are influenced by environmental changes such as elevated pCO2 and temperature. This study examines changes in the expression of essential metabolic genes in Trichodesmium grown under a matrix of pCO2 (400 and 900 µatm) and temperature (25 and 31°C). Using RT-qPCR, we studied 21 genes related to four metabolic functional groups: CO2 concentrating mechanism (bicA1, bicA2, ccmM, ccmK2, ccmK3, ndhF4, ndhD4, ndhL, chpX), energy metabolism (atpB, sod, prx, glcD), nitrogen metabolism (glnA, hetR, nifH), and inorganic carbon fixation and photosynthesis (rbcL, rca, psaB, psaC, psbA). nifH and most photosynthetic genes exhibited relatively high abundance and their expression was influenced by both environmental parameters. A two to three orders of magnitude increase was observed for glnA and hetR only when both pCO2 and temperature were elevated. CO2 concentrating mechanism genes were not affected by pCO2 and temperature and their expression levels were markedly lower than that of the nitrogen metabolism and photosynthetic genes. Many of the CO2 concentrating mechanism genes were co-expressed throughout the day. Our results demonstrate that in Trichodesmium, CO2 concentrating mechanism genes are constitutively expressed. Co-expression of genes from different functional groups were frequently observed during the first half of the photoperiod when oxygenic photosynthesis and N2 fixation take place, pointing at the tight and complex regulation of gene expression in Trichodesmium. Here we provide new data linking environmental changes of pCO2 and temperature to gene expression in Trichodesmium. Although gene expression indicates an active metabolic pathway, there is often an uncoupling between transcription and enzyme activity, such that transcript level cannot usually be directly extrapolated to metabolic activity

    The R2R3-MYB Transcription Factor Gene Family in Maize

    Get PDF
    MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes. We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs, demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this gene family, and will facilitate future functional analysis of the MYB gene family in maize

    The organelle of differentiation in embryos: the cell state splitter

    Full text link

    Thirty years of Biology & Philosophy: philosophy of which biology?

    Get PDF
    Which domains of biology do philosophers of biology primarily study? The fact that philosophy of biology has been dominated by an interest for evolutionary biology is widely admitted, but it has not been strictly demonstrated. Here I analyse the topics of all the papers published in Biology & Philosophy, just as the journal celebrates its thirtieth anniversary. I then compare the distribution of biological topics in Biology & Philosophy with that of the scientific journal Proceedings of the National Academy of Science of the USA, focusing on the recent period 2003-2015. This comparison reveals a significant mismatch between the distributions of these topics. I examine plausible explanations for that mismatch. Finally, I argue that many biological topics underrepresented in philosophy of biology raise important philosophical issues and should therefore play a more central role in future philosophy of biology

    The Space Physics Environment Data Analysis System (SPEDAS)

    Get PDF
    With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans
    corecore