102 research outputs found

    Metasomatism in the Ultrahigh-pressure Svartberget Garnet-peridotite (Western Gneiss Region, Norway): Implications for the Transport of Crust-derived Fluids within the Mantle

    Get PDF
    Garnet-peridotites often contain veins or layers of pyroxenite and eclogite of uncertain origin. We investigate the Svartberget garnet-peridotite from the northernmost ultrahigh-pressure domain in the Western Gneiss Region (WGR) in Norway and show that the observed layering represents a sequence of metasomatic reaction zones developed along a fracture system. From the garnet-peridotite wall-rock to the fractures the following sequential reaction zones are recognized: clinohumite bearing garnet-peridotite, olivine-garnet-websterite, garnet-websterite, orthopyroxene-phlogopite-garnet-websterite, coarse-grained phlogopite-garnet-websterite, phlogopite-garnet-websterite, phlogopite-free garnet-websterite, inclusion-rich garnetite, garnetite, eclogite, retrograde omphacitite and felsic amphibole-pegmatite. The MgO, FeO and CaO contents generally decrease from the pristine peridotite towards the most metasomatized samples, with an associated increase in SiO2 and Al2O3. Concentrations of fluid-mobile elements increase from the most pristine peridotite towards the garnetite, whereas Ni and Cr decrease from ∼700 to ∼10 ppm and ∼2600 to ∼25 ppm, respectively. Changes in mineral mode are accompanied by changes in mineral chemistry. All minerals display decreasing Mg# and Cr content with degree of metasomatism, whereas Na2O concentrations in amphibole, and most notably in clinopyroxene, increase from 0·2 to 3·0 and from 0·2 to 8 wt %, respectively. The trivalent ions Cr and Al display complex intra-granular vein-like or patchy zoning in garnet and pyroxenes that may be characteristic of metasomatized peridotites. Dating by the U-Pb method suggests metamorphic growth of zircon in the garnetite at 397·2 ± 1·2 Ma, formation of leucosomes in host-rock gneiss at 391·2 ± 0·8 Ma, and amphibole-pegmatite in the core of a garnetite vein at 390·1 ± 0·9 Ma. Initial 87Sr/86Sr values calculated at 397 Ma are elevated (∼0·723) in the most pristine peridotites and increase to ∼0·743 in the most metasomatized samples. The initial 87Sr/86Sr values of both the host gneiss and its leucosomes are also elevated (0·734-0·776), which suggests that the leucosomes found in the gneisses are the most likely, now solidified, remnants of the reactive agent that metasomatized the Svartberget peridotite. A scenario is envisaged in which material derived from the country rock gneiss was the source of the metasomatic addition of elements to the peridotites and the gneisses acted as the host for all elements removed from the peridotite. The Svartberget peridotite may provide an important analogue of how felsic, slab-derived material interacts with the overlying mantle wedge peridotite in regions of arc magma generatio

    Metasomatism in the Ultrahigh-pressure Svartberget Garnet-peridotite (Western Gneiss Region, Norway): Implications for the Transport of Crust-derived Fluids within the Mantle

    Get PDF
    Garnet-peridotites often contain veins or layers of pyroxenite and eclogite of uncertain origin. We investigate the Svartberget garnet-peridotite from the northernmost ultrahigh-pressure domain in the Western Gneiss Region (WGR) in Norway and show that the observed layering represents a sequence of metasomatic reaction zones developed along a fracture system. From the garnet-peridotite wall-rock to the fractures the following sequential reaction zones are recognized: clinohumite bearing garnet-peridotite, olivine–garnet-websterite, garnet-websterite, orthopyroxene–phlogopite–garnet-websterite, coarse-grained phlogopite–garnet-websterite, phlogopite–garnet-websterite, phlogopite-free garnet-websterite, inclusion-rich garnetite, garnetite, eclogite, retrograde omphacitite and felsic amphibole-pegmatite. The MgO, FeO and CaO contents generally decrease from the pristine peridotite towards the most metasomatized samples, with an associated increase in SiO2 and Al2O3. Concentrations of fluid-mobile elements increase from the most pristine peridotite towards the garnetite, whereas Ni and Cr decrease from ∼700 to ∼10 ppm and ∼2600 to ∼25 ppm, respectively. Changes in mineral mode are accompanied by changes in mineral chemistry. All minerals display decreasing Mg# and Cr content with degree of metasomatism, whereas Na2O concentrations in amphibole, and most notably in clinopyroxene, increase from 0·2 to 3·0 and from 0·2 to 8 wt %, respectively. The trivalent ions Cr and Al display complex intra-granular vein-like or patchy zoning in garnet and pyroxenes that may be characteristic of metasomatized peridotites. Dating by the U–Pb method suggests metamorphic growth of zircon in the garnetite at 397·2 ± 1·2 Ma, formation of leucosomes in host-rock gneiss at 391·2 ± 0·8 Ma, and amphibole-pegmatite in the core of a garnetite vein at 390·1 ± 0·9 Ma. Initial 87Sr/86Sr values calculated at 397 Ma are elevated (∼0·723) in the most pristine peridotites and increase to ∼0·743 in the most metasomatized samples. The initial 87Sr/86Sr values of both the host gneiss and its leucosomes are also elevated (0·734–0·776), which suggests that the leucosomes found in the gneisses are the most likely, now solidified, remnants of the reactive agent that metasomatized the Svartberget peridotite. A scenario is envisaged in which material derived from the country rock gneiss was the source of the metasomatic addition of elements to the peridotites and the gneisses acted as the host for all elements removed from the peridotite. The Svartberget peridotite may provide an important analogue of how felsic, slab-derived material interacts with the overlying mantle wedge peridotite in regions of arc magma generation

    Quality of life among cancer inpatients 80 years and older: a systematic review

    Get PDF
    Objective The aim of this systematic review was to summarize and assess the literature on quality of life (QoL) among cancer patients 80 years and older admitted to hospitals and what QoL instruments have been used. Methods We searched systematically in Medline, Embase and Cinahl. Eligibility criteria included studies with any design measuring QoL among cancer patients 80 years and older hospitalized for treatment (surgery, chemotherapy or radiation therapy). Exclusion criteria: studies not available in English, French, German or Spanish. We screened the titles and abstracts according to a predefined set of inclusion criteria. All the included studies were assessed according to the Critical Appraisal Skills Programme checklists, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement checklist was used to ensure rigor in conducting and reporting. This systematic review was registered in PROSPERO (CRD42017058290). Results We included 17 studies with 2005 participants with various cancer diagnoses and Classification of Malignant Tumors stages (TNM). The included studies used a range of different QoL instruments and had different aims and outcomes. Both cancer-specific and generic instruments were used. Only one of the 17 studies used an age-specific instrument. All the studies included patients 80 years and older in their cohort, but none specifically analyzed QoL outcomes in this particular subgroup. Based on findings in the age-heterogeneous population (age range 20–100 years), QoL seems to be correlated with the type of diagnosed carcinoma, length of stay, depression and severe symptom burden. Conclusion We were unable to find any research directly exploring QoL and its determinants among cancer patients 80 years and older since none of the included studies presented specific analysis of data in this particular age subgroup. This finding represents a major gap in the knowledge base in this patient group. Based on this finding, we strongly recommend future studies that include this increasingly important and challenging patient group to use valid age- and diagnosis-specific QoL instruments.publishedVersio

    Evaluating the importance of metamorphism in the foundering of continental crust

    Get PDF
    The metamorphic conditions and mechanisms required to induce foundering in deep arc crust are assessed using an example of representative lower crust in SW New Zealand. Composite plutons of Cretaceous monzodiorite and gabbro were emplaced at ~1.2 and 1.8 GPa are parts of the Western Fiordland Orthogneiss (WFO); examples of the plutons are tectonically juxtaposed along a structure that excised ~25 km of crust. The 1.8 GPa Breaksea Orthogneiss includes suitably dense minor components (e.g. eclogite) capable of foundering at peak conditions. As the eclogite facies boundary has a positive dP/dT, cooling from supra-solidus conditions (T > 950 ºC) at high-P should be accompanied by omphacite and garnet growth. However, a high monzodioritic proportion and inefficient metamorphism in the Breaksea Orthogneiss resulted in its positive buoyancy and preservation. Metamorphic inefficiency and compositional relationships in the 1.2 GPa Malaspina Pluton meant it was never likely to have developed densities sufficiently high to founder. These relationships suggest that the deep arc crust must have primarily involved significant igneous accumulation of garnet–clinopyroxene (in proportions >75%). Crustal dismemberment with or without the development of extensional shear zones is proposed to have induced foundering of excised cumulate material at P > 1.2 GPa

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    corecore