649 research outputs found

    Poisson and Porter-Thomas Fluctuations in off-Yrast Rotational Transitions

    Full text link
    Fluctuations associated with stretched E2 transitions from high spin levels in nuclei around 168^{168}Yb are investigated by a cranked shell model extended to include residual two-body interactions. It is found that the gamma-ray energies behave like random variables and the energy spectra show the Poisson fluctuation, in the cranked mean field model without the residual interaction. With two-body residual interaction included, discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE type fluctuations for both energy levels and transition strengths(Porter-Thomas fluctuations).Comment: 21 pages, phyzzx, YITP/K-99

    The Coherent Crooks Equality

    Full text link
    This chapter reviews an information theoretic approach to deriving quantum fluctuation theorems. When a thermal system is driven from equilibrium, random quantities of work are required or produced: the Crooks equality is a classical fluctuation theorem that quantifies the probabilities of these work fluctuations. The framework summarised here generalises the Crooks equality to the quantum regime by modeling not only the driven system but also the control system and energy supply that enables the system to be driven. As is reasonably common within the information theoretic approach but high unusual for fluctuation theorems, this framework explicitly accounts for the energy conservation using only time independent Hamiltonians. We focus on explicating a key result derived by Johan {\AA}berg: a Crooks-like equality for when the energy supply is allowed to exist in a superposition of energy eigenstates states.Comment: 11 pages, 3 figures; Chapter for the book "Thermodynamics in the Quantum Regime - Recent Progress and Outlook", eds. F. Binder, L. A. Correa, C. Gogolin, J. Anders and G. Adess

    Correlation studies of fission fragment neutron multiplicities

    Full text link
    We calculate neutron multiplicities from fission fragments with specified mass numbers for events having a specified total fragment kinetic energy. The shape evolution from the initial compound nucleus to the scission configurations is obtained with the Metropolis walk method on the five-dimensional potential-energy landscape, calculated with the macroscopic-microscopic method for the three-quadratic-surface shape family. Shape-dependent microscopic level densities are used to guide the random walk, to partition the intrinsic excitation energy between the two proto-fragments at scission, and to determine the spectrum of the neutrons evaporated from the fragments. The contributions to the total excitation energy of the resulting fragments from statistical excitation and shape distortion at scission is studied. Good agreement is obtained with available experimental data on neutron multiplicities in correlation with fission fragments from 235^{235}U(nth_{\rm th},f). At higher neutron energies a superlong fission mode appears which affects the dependence of the observables on the total fragment kinetic energy.Comment: 12 pages, 10 figure

    Shell Model for Warm Rotating Nuclei

    Get PDF
    In order to provide a microscopic description of levels and E2 transitions in rapidly rotating nuclei with internal excitation energy up to a few MeV, use is made of a shell model which combines the cranked Nilsson mean-field and the residual surface delta two-body force. The damping of collective rotational motion is investigated in the case of a typical rare-earth nucleus, namely \Yb. It is found that rotational damping sets in at around 0.8 MeV above the yrast line, and the levels which form rotational band structures are thus limited. We predict at a given rotational frequency existence of about 30 rotational bands of various lengths, in overall agreement with the experimental findings. The onset of the rotational damping proceeds quite gradually as a function of the internal excitation energy. The transition region extends up to around 2 MeV above yrast and it is characterized by the presence of scars of discrete rotational bands which extend over few spin values and stand out among the damped transitions, and by a two-component profile in the EγEγE_\gamma -E_\gamma correlation. The important role played by the high-multipole components of the two-body residual interaction is emphasized.Comment: 28 pages, LaTe

    On the role of shake-off in single-photon double ionization

    Full text link
    The role of shake-off for double ionization of atoms by a single photon with finite energy has become the subject of debate. In this letter, we attempt to clarify the meaning of shake-off at low photon energies by comparing different formulations appearing in the literature and by suggesting a working definition. Moreover, we elaborate on the foundation and justification of a mixed quantum-classical ansatz for the calculation of single-photon double ionization

    Microscopic Origin of Quantum Chaos in Rotational Damping

    Full text link
    The rotational spectrum of 168^{168}Yb is calculated diagonalizing different effective interactions within the basis of unperturbed rotational bands provided by the cranked shell model. A transition between order and chaos taking place in the energy region between 1 and 2 MeV above the yrast line is observed, associated with the onset of rotational damping. It can be related to the higher multipole components of the force acting among the unperturbed rotational bands.Comment: 7 pages, plain TEX, YITP/K-99

    Survival Probability of a Doorway State in regular and chaotic environments

    Full text link
    We calculate survival probability of a special state which couples randomly to a regular or chaotic environment. The environment is modelled by a suitably chosen random matrix ensemble. The exact results exhibit non--perturbative features as revival of probability and non--ergodicity. The role of background complexity and of coupling complexity is discussed as well.Comment: 19 pages 5 Figure

    Topological Alterations of the Structural Brain Connectivity Network in Children with Juvenile Neuronal Ceroid Lipofuscinosis

    Get PDF
    BACKGROUND AND PURPOSE: We used diffusion MR imaging to investigate the structural brain connectivity networks in juvenile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood. Although changes in conventional MR imaging are typically not visually apparent in children agedPeer reviewe
    corecore