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ABSTRACT

BACKGROUND AND PURPOSE:We used diffusion MR imaging to investigate the structural brain connectivity networks in juvenile neu-
ronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood. Although changes in conventional MR imaging
are typically not visually apparent in children aged ,10 years, we previously found significant microstructural abnormalities by using dif-
fusion MR imaging. Therefore, we hypothesized that the structural connectivity networks would also be affected in the disease.

MATERIALS AND METHODS: We acquired diffusion MR imaging data from 14 children with juvenile neuronal ceroid lipofuscinosis
(mean 6 SD age, 9.6 6 3.4 years; 10 boys) and 14 control subjects (mean 6 SD age, 11.2 6 2.3 years; 7 boys). A follow-up MR imaging
was performed for 12 of the patients (mean 6 SD age, 11.4 6 3.2 years; 8 boys). We used graph theoretical analysis to investigate
the global and local properties of the structural brain connectivity networks reconstructed with constrained spherical deconvolu-
tion–based whole-brain probabilistic tractography.

RESULTS: We found significantly increased characteristic path length (P = .003) and decreased degree (P = .003), which indicated
decreased network integration and centrality in children with juvenile neuronal ceroid lipofuscinosis. The findings were similar for
the follow-up MR imaging, and there were no significant differences between the two acquisitions of the patients. In addition, we
found that the disease severity correlated negatively (P, .007) with integration, segregation, centrality, and small-worldness of the
networks. Moreover, we found significantly (P, .0003) decreased local efficiency in the left supramarginal gyrus and temporal
plane, and decreased strength in the right lingual gyrus.

CONCLUSIONS:We found significant global and local network alterations in juvenile neuronal ceroid lipofuscinosis that correlated
with the disease severity and in areas related to the symptomatology.

ABBREVIATIONS: CLN3 4 juvenile neuronal ceroid lipofuscinosis; CSD 4 constrained spherical deconvolution; LSD 4 lysosomal storage disease; UPDRS 4
Unified Parkinson’s Disease Rating Scale

D iffusion-weighted MR imaging has enabled the in vivo inves-
tigation of white matter tracts in the brain.1 Different kinds

of approaches have been applied, such as analyzing specific
regions of interest or investigating the white matter tract skeleton
of the brain.2 However, a large part of the white matter remains
outside of these analyses.3,4 Recently, graph theoretical analysis

has been applied to investigate structural brain connectivity net-
works.5,6 In this approach, whole-brain tractography is first per-
formed to reconstruct the white matter pathways of the brain,7

which are then used to weight connections between segmented
gray matter areas.8 Graph theoretical metrics can then be used to
investigate both global and local properties of these networks.9

This approach has been shown to be reproducible10 and has been
used in several diseases, for example, schizophrenia,11 autism
spectrum disorder,12 and Alzheimer disease.13
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Lysosomal storage diseases (LSDs) are often inherited in an
autosomal recessive manner and are caused by mutations in
genes encoding for enzymes involved in the degradation of mac-
romolecules.14 This results in excessive storage of cellular mate-
rial in lysosomes, which eventually leads to cell death and
dysfunction of several organs.14 However, the CNS seems to be
especially vulnerable to the storage of cellular material, and neu-
rologic symptoms are common or, in some cases, even the only
symptoms, in these disorders.14 The neuropathology of LSDs has
been reviewed before14 and includes several mechanisms that
lead to neurologic dysfunction, depending on the disease.
However, in many of these diseases, the pathology is poorly
understood.

The classification of LSDs also includes neuronal ceroid lip-
ofuscinoses,14 a group of inherited, progressive, neurodegener-
ative disorders, in which autofluorescent ceroid lipopigments
are accumulated in the lysosomes. Juvenile neuronal ceroid
lipofuscinosis (CLN3) is caused by mutations in the CLN3
gene encoding a membrane protein, whose dysfunction leads
to severe symptoms: progressive visual failure, which leads to
blindness around the ages of 4 to 10 years15-17; deterioration in
cognitive and motor functions; epileptic seizures; and neuro-
psychiatric symptoms.15 Also, the disease leads to death in the
second or third decade of life.18 The exact mechanism of the
disease is poorly understood, although several functions of
the protein have been proposed: membrane fusion, vesicular
transport, cytoskeletal linked function, lysosomal acidification,
lysosomal arginine import, autophagy, apoptosis, and proteoli-
pid modification.18

Previous MR imaging studies in patients with CLN3 reported
cerebral and cerebellar atrophy, progressive hippocampal atro-
phy, alterations of the thalami, and decreased white matter vol-
ume in the corona radiata.19-21 In a postmortem study, higher
MR imaging signal intensity of the periventricular white matter
was reported, together with histologically observed severe peri-
ventricular loss of myelin and gliosis.22 We recently investigated
the white matter microstructure of the brain in children with
CLN323 and found significant global and widespread local differ-
ences by using tract-based spatial statistics2 and whole-brain trac-
tography,7 even though conventional MR imaging is usually
visually normal in patients aged,10 years.19

In this study, we analyzed the topological organization of the
structural brain connectivity networks with graph theoretical
methods.6 To our knowledge, these networks have not been
investigated before in LSDs. We hypothesized that there would
be 1) global topological alterations; and 2) local connectivity
abnormalities in the structural brain connectivity networks in
CLN3, and that they would be related to the severity of the symp-
toms. We used constrained spherical deconvolution (CSD)–based
tractography7,24 instead of the more traditional DTI25 because
the latter is unable to characterize crossing fibers, present in
60%–90% of the white matter.26 Most of the patients underwent
follow-up MR imaging after 2 years, which allowed us to investi-
gate longitudinal changes in the structural brain connectivity net-
works. Furthermore, we analyzed the correlations between the
network properties and the scores from the Unified Parkinson’s
Disease Rating Scale (UPDRS) Part III Motor Examination.27

MATERIALS AND METHODS
Participants
We acquired diffusion-weighted MR imaging data from 14
patients with CLN3 (age, mean 6 SD 9.3 6 3.1 years; 10 boys)
and 14 age-matched control subjects (age, mean 6 SD 11.3 6

2.3 years; 7 boys). The control subjects were healthy volunteers
recruited through the personnel mailing list of the Helsinki
University Hospital. They were attending conventional elemen-
tary school education and did not have regular medication, brain
diseases, or long-term diagnoses. One of the control subjects had
to be excluded due to image artifacts. A follow-up MR imaging
was performed for 12 of the patients (age mean 6 SD 11.2 6

3.1 years; 8 boys). The differences in age were not statistically sig-
nificant between the patients and the controls. The motor per-
formance of the patients was clinically evaluated with UPDRS
Part III before the first (score, mean 6 SD 5.5 6 8.6 [range, 0–
23]) and second (score, mean 6 SD 7.6 6 13.8 [range, 0–38])
MR imaging acquisition.

The patients were diagnosed based on their clinical symptoms,
including the deterioration of vision and typical ophthalmologic
findings. The symptoms of each patient are described in more
detail in Table 1. The diagnoses were confirmed by a DNA analy-
sis.23 Symptomatic medication typical to the disease was in use.
The ethics committee for Gynaecology and Obstetrics, Pediatrics
and Psychiatry of the Hospital District of Helsinki and Uusimaa
approved the research protocol, and a guardian of all the partici-
pants signed a written informed consent form before the study.

Data Acquisition
The MR imaging data were acquired with an (Philips Medical
Systems, Best, Netherlands) Achieva 3T scanner (Phillips
Healthcare, Best, the Netherlands) and an 8-channel head coil by
using a 2mm � 2mm � 2mm voxel size and 32 gradient orien-
tations with a diffusion weighting of 1000 s/mm2. In addition, 1
non-DWI was acquired. The field of view was 224mm �
224mm � 160mm, and 80 axial slices were acquired. Echo time
was 59.5ms, and repetition time was 10.809 seconds. T1-
weighted anatomic 3D images were acquired with a resolution
of 1mm � 1 mm � 1mm. The field of view was 256mm �
256mm� 170mm, repetition time was 8.3ms, echo time was
3.8ms, and the flip angle was 8°. T2WIs were acquired, with a reso-
lution of 0.5mm� 0.5mm� 4.4mm and for 8 of the 12 patients in
the second acquisition, fluid-attenuated inversion recovery images
were acquired, with a resolution of 0.4mm� 0.4mm� 4.4mm.

Reconstruction of the Structural Brain Connectivity
Networks
We first corrected the diffusion-weighted data for subject
motion28 and eddy current–induced distortions in ExploreDTI

Table 1: Description of the symptoms of the patients with
CLN3 during the first acquisition

Symptoms None, n (%) Mild, n (%) Severe, n (%)
Visual impairment 1 (7) 9 (64) 4 (29)
Psychiatric symptoms 9 (64) 4 (29) 1 (7)
Epilepsy 9 (64) 3 (21) 2 (14)
Intellectual disability 9 (64) 4 (29) 1 (7)
Motor impairment 9 (64) 5 (36) 0 (0)
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(version 4.8.6; http://exploredti.com/).29 Because no reverse
phase–encoding data were available, we used nonlinear registra-
tion with cubic splines to the T1-weighted data to correct for the
echo-planar imaging distortions.30 We then estimated fiber ori-
entation distributions with CSD24 by using up to fourth-order
spherical harmonics. We performed probabilistic CSD-based
tractography7 in ExploreDTI29 with a seed point resolution of
1.0mm � 1.0mm � 1.0mm within the brain mask, step size of
1mm, fiber orientation distribution threshold of 0.1, angle
threshold of 45°, and fiber length range of 50 to 500mm. Cortical
and subcortical gray matter parcellation of the T1WI was per-
formed in FreeSurfer8 (http://surfer.nmr.mgh.harvard.edu) by
using the Destrieux atlas.31 Also, the 2 ends of each reconstructed
streamline were assigned to gray matter areas based on the par-
cellation, including the cerebellum, as described in Fig 1. In the
structural brain connectivity networks, the nodes represent the
gray matter areas, and the edges represent the reconstructed
streamlines between the nodes, which resulted in a 164� 164
connectivity matrix weighted by the number of streamlines. The
networks were visualized in MRtrix3 (http://neuro.debian.net/
pkgs/mrtrix.html),32 and the whole-brain tractography was per-
formed (Fig 1B) in ExploreDTI.29

Graph Theoretical Analysis of the Brain Network
Properties
We investigated global and local properties of the structural brain
connectivity networks weighted by the number of streamlines by
using graph theoretical analysis.6,9 Based on a study in 2019 by

Civier et al,33 we did not apply a
threshold based on the number of
streamlines to the networks. The
graph theoretical analyses were per-
formed in Matlab (MathWorks,
Natick, Massachusetts) by using the
Brain Connectivity Toolbox.9 In the
global analysis, we investigated
degree, strength, clustering coeffi-
cient,34 characteristic path length,35

global efficiency,36 betweenness cen-
trality,37 and small-worldness.35 Local
node-level analyses were performed for
strength, local efficiency, and between-
ness centrality. The measures are pre-
sented in more detail in the On-line
Table.

Statistical Analyses
Statistical analyses were performed
with the general linear model in SPSS
Statistics version 25 (IBM, Armonk,
New York) by using age and sex as
covariates. The results were corrected
for multiple comparisons with the
Bonferroni correction. The partial cor-
relations with the UPDRS Part III
scores were calculated by using age
and sex as covariates.

RESULTS
Global Graph Theoretical Properties
We found global differences in the topological organization of
the structural brain connectivity networks be-tween the patients
with CLN3 and the healthy control subjects. The characteristic
path length was significantly increased (P= .003) and the degree
was significantly decreased in patients with CLN3 (P= .003), as
shown in Table 2. In addition, clustering coefficient, global effi-
ciency, small-worldness, and strength were decreased in patients
with CLN3 (P, .05) but did not endure the Bonferroni correc-
tion for multiple comparisons.

The results were similar for the first and the second acquisi-
tions of the patients compared with the control subjects, as shown
in Table 2. However, small-worldness was not decreased (P. .05)
during the second acquisition of the patients with CLN3 com-
pared with the control subjects, and betweenness centrality was
increased (P, .05). No significant differences were found in any
of the global network properties between the 2 acquisitions of the
patients with CLN3 on the group level or by using a pair-wise t
test (P. .05). The global results are further visualized in On-line
Figure 1.

We found significant correlations between several global net-
work properties and the UPDRS Part III scores in patients with
CLN3, including the data from both the first and second acquisi-
tions, as shown in Fig 2. Clustering coefficient, global efficiency,
small-worldness, and strength correlated negatively, and charac-
teristic path length correlated positively with the UPDRS Part III

FIG 1. Reconstruction of the structural brain connectivity networks. A, Cortical and subcortical par-
cellation of the T1WI results in 164 gray matter regions. B, Whole-brain probabilistic streamlines trac-
tography based on the corrected DWI can be used to reconstruct structural connectivity pathways
of the brain. C, The structural brain connectivity network, in which the nodes represent the gray
matter areas and the edges are weighted by the number of streamlines that connect the nodes.
The size of the nodes corresponds to the volume of the gray matter area. The width of the edges
corresponds to the number of streamlines, and the color of the edges corresponds to
the direction of the connection (red: left-right, green: anterior-posterior, blue: superior-inferior).
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scores. The correlations were similar for the first and second
acquisitions separately but did not endure the Bonferroni correc-
tion for multiple comparisons.

Local Graph Theoretical Properties
We investigated 3 local network properties: betweenness central-
ity, local efficiency, and strength. In the first acquisition of the
patients with CLN3 compared with the control subjects, we
found increased betweenness centrality in 1 region (P, .01),
decreased local efficiency in 27 regions (P, .01), and decreased
strength in 9 regions (P, .01) in CLN3. These results are pre-
sented in more detail in the On-line Figure 2 and On-line Figure
3. However, none of these results endured the Bonferroni correc-
tion for multiple comparisons.

In the second acquisition of the patients with CLN3 compared
with the control subjects, we found increased betweenness

centrality in the left thalamus (P= .002) and in the left middle
frontal gyrus (P= .004), decreased local efficiency in 48 regions
(P, .01), and decreased strength in 7 regions (P, .01), as shown
in On-line Figure 3. These results are illustrated in Fig 3. Of these
results, the decreased local efficiency of the left supramarginal
gyrus in the inferior parietal lobe and left temporal plane of the
superior temporal gyrus, and the decreased strength of the right
lingual gyrus in the medial occipitotemporal gyrus remained sig-
nificant after the Bonferroni correction for multiple comparisons
(P, .0003). These results are emphasized with red circles in
Fig 3.

Between the first and the second acquisitions of the patients
with CLN3, we found differences (P, .01) in 2 regions:
increased betweenness centrality in the orbital part of the right
inferior frontal gyrus; and increased strength in the area,
including the right lingual gyrus and the right medial occipito-

Table 2: Global differences in the network properties between the patients with CLN3 and the control subjects, with age and sex
used as covariates

Network Property

CLN3a

Control
Subjectsa

P
First

Acquisition
Second

Acquisition
CLN3 First Acquisition
vs. Control Subjects

CLN3 Second Acquisition
vs. Control Subjects

Betweenness centrality 288 6 22 294 6 17 278 6 11 .084 .008
Characteristic path length 0.118 6 0.062 0.130 6 0.073 0.074 6 0.014 .003b .003b

Clustering coefficient 5.27 6 1.57 5.32 6 2.12 6.45 6 0.77 .011 .017
Degree 25.9 6 4.6 25.3 6 5.0 29.5 6 1.79 .003b .002b

Global efficiency 22.6 6 8.6 22.8 6 11.6 28.5 6 4.5 .014 .030
Small-worldness 5.03 6 0.85 5.24 6 1.19 5.78 6 0.80 .009 .126
Strength 511 6 191 506 6 255 645 6 105 .012 .020

a Data are mean6 standard deviation.
b Indicates significant differences after the Bonferroni correction for multiple comparisons.

FIG 2. Scatterplots and the fitted lines, describing the correlation between the global network properties and UPDRS Part III: motor examina-
tion scores. Statistically significant (Bonferroni corrected) correlation coefficients (c) are marked with an asterisk.
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temporal sulcus. These results were not significant after the
Bonferroni correction.

DISCUSSION
In this study, we compared both global and local structural
brain network properties between children with CLN3 and age-
matched controls. Twelve of 14 patients underwent a follow-up
MR imaging after 2 years, which allowed us to investigate longi-
tudinal changes. Moreover, we investigated whether the global
network properties correlated with motor impairment.

The comparison of the global graph theoretical properties
between the children with CLN3 and the control subjects
revealed a significantly increased characteristic path length and
decreased degree in CLN3. Characteristic path length35 is a mea-
sure of integration of the network, and it describes how easily the
different nodes, in this case, gray matter areas, can communicate
with each other.9 An increased characteristic path length suggests
that the integration of the structural brain networks in children
with CLN3 is decreased, which may indicate that the networks in
CLN3 are more lattice, with a lower number of interconnecting
links.6 The decreased degree indicates decreased centrality of the
networks in CLN3.

However, there were no significant differences in the global or
local network properties between the 2 acquisitions of the
patients with CLN3, similar to our previous results with concern
to the white matter microstructure.23 This suggests that neither
the microstructural nor the connectivity properties change rap-
idly at this age and that the alterations are present already before
the age of 10 years.

Moreover, we investigated the correlation between the global
network measures and UPDRS Part III scores. The characteristic
path length was positively correlated and global efficiency was
negatively correlated with UPDRS Part III scores, which suggests
an increase in motor impairment, with a decrease of the integra-
tion of structural brain networks. The small-worldness and clus-
tering coefficient correlated negatively with the scores, which
indicates that the segregation decreases when the motor

impairment increases. Strength
correlated negatively with the
UPDRS Part III scores, but the
correlation of degree was not sig-
nificant after the correction for
multiple comparisons.

We investigated 3 local net-
work properties: betweenness cen-
trality, local efficiency, and strength.
Local efficiency and strength were
decreased in 20%–30% of the nodes
in children with CLN3. However,
only 3 nodes remained significant
after the Bonferroni correction for
multiple comparisons, and thus,
other results should be interpreted
with caution. The 3 significant dif-
ferences were the decreased local ef-
ficiency in the left supramarginal
gyrus and the left temporal plane,

and decreased strength in the right lingual gyrus in patients with
CLN3, which indicate that the structural connectivity of these
areas would be impaired in CLN3.

The temporal plane forms a major part of the Wernicke area,
and is thought to be involved in early phonological and nonword
auditory processing.38,39 Lesions near or including the area might
lead to auditory discrimination and speech comprehension defi-
cits, and the area is assumed to be involved in Wernicke apha-
sia.38 The left temporal plane is typically larger in healthy
subjects, and reduced asymmetry has been linked to schizophre-
nia and dyslexia.38 Some of the patients with CLN3 experience
hallucinations, and some might also produce jargon, which is
also a symptom of Wernicke aphasia. However, in our experi-
ence, it is more common for the patients with CLN3 to have
problems in speech production than the content of the speech.

The supramarginal gyrus belongs to the inferior parietal lobe,
together with the angular gyrus.40,41 Based on a classic neurobio-
logical model of language, the inferior parietal lobe is involved in
the recognition of visual word forms,42 which are then linked to
auditory word forms in the Wernicke area, and motor patterns in
the Broca area.40 Increased activation of the supramarginal gyrus
has been reported when focusing on the sound of the words in
contrast to their meaning.43 The supramarginal gyrus is con-
nected to auditory association areas in the posterior supratempo-
ral plane and posterior inferior frontal gyrus,44 both of which are
involved in phonological processing.45 Difficulties related to pho-
nological word decisions are typically related to damage in the
left hemisphere46 and might lead to conduction aphasia44,47 or
Wernicke aphasia.48 In CLN3, the speech difficulties increase as
the disease progresses and include, for instance, difficulties in
starting to speak and festinating stuttering.49

The lingual gyrus, a region in the occipital lobe, has been
linked to vision, especially related to processing of letters,50-52

encoding of complex images,53 impairment of visual memories,54

and logical order of events.55 The lingual gyrus has also been
related to semantic processing during a task with repeating stim-
uli during a variety of aphasia tests in subjects with aphasia.56 In

FIG 3. Local differences in betweenness centrality, local efficiency, and strength between the sec-
ond acquisition of the patients with CLN3 and the control subjects. The size of the nodes illustrates
the volume of the gray matter region, and the color indicates the statistical significance of the differ-
ences (P values). Significant differences (P, .0003) after a Bonferroni correction for multiple com-
parisons are highlighted with red circles. Local efficiency was decreased in the left supramarginal
gyrus and the left temporal plane, and strength was decreased in the right lingual gyrus.
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addition, possible links to the hippocampal regions (related to
recollection of facts)57 and the amygdala (related to high-emotion
words and images) have been reported.58 Also, the occipitotem-
poral region is involved in perception of colors59,60 and faces,61,62

and especially the right lingual gyrus has been related to proso-
pagnosia63,64 and to topographagnosia,65 the inability to recog-
nize faces and landmarks, respectively. In CLN3, the first
symptom is usually an impairment in vision that leads rapidly to
blindness. Decreased strength in the right lingual gyrus indicates
that patients with CLN3 have fewer connections from the lingual
gyrus to other nodes than do the control subjects.

Previous MR imaging findings indicate that there are thalamic
alterations in LSDs.66 In CLN3, decreased gray matter volume in
the dorsomedial part of the thalami has been reported.67 We
found decreased local efficiency and strength in the right thala-
mus and increased betweenness centrality in the left thalamus.
However, the results that concern the thalami did not endure cor-
rection for multiple comparisons.

Limitations of this study include a relatively small sample size,
which is common in rare diseases, for example, CLN3. In addi-
tion, the acquisition was suboptimal for CSD-based tractography
because the diffusion weighting and the number of gradient ori-
entations and non-DWIs were relatively low,68 and reverse-phase
encoding data were not available. However, fiber crossings can be
reliably identified with CSD.69 In the future, multi-shell diffu-
sion-weighted MR imaging acquisition may be used to enable
more advanced models, such as neurite orientation dispersion
and attenuation imaging,70 and improve tractography within the
gray matter.71,72

CONCLUSIONS
We found increased characteristic path length and decreased
degree, which indicate decreased global integration and centrality
of the structural brain connectivity networks in CLN3. Local
analyses revealed differences in the left supramarginal gyrus, the
left temporal plane, and the right lingual gyrus. In addition,
although not significant after correction for multiple compari-
sons, the changes in the right thalamus are interesting because
thalamic alteration have been reported consistently in LSDs. No
significant differences were observed between the 2 acquisitions
of the patients in the network properties. Our previous study, to-
gether with the current study, indicate that, in patients with
CLN3, the microstructural white matter abnormalities and
changes in the structural brain network properties are present al-
ready before the age of 10 years and do not progress rapidly in
the prepubertal stage.
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