96,811 research outputs found
Lateral heterogeneity and azimuthal anistropy of the upper mantle: Love and Rayleigh waves 100-250 sec
The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage
Origin, evolution and present thermal state of the moon
The relative absence of lunar volcanism in the last 3 b.y. and the Apollo 15 heat flow measurement suggest that present-day temperatures in the moon are approximately steady state to depths of 100 km. An exponential distribution of heat sources with depth is scaled by equating the surface heat flow to the integrated heat production of this exterior shell. Presumed present-day interior temperatures and the present-day surface heat flow of 30 ergs/cm2-sec are obtained. The estimated homogeneous concentrations of U, the chemistry of the lunar surface material and inferences to modest depth, and the short accretion time of the moon necessary to provide large-scale differentiation at 4.6 AE suggest that the moon had its origin in the rapid accretion of compounds first condensing from the protoplanetary nebula. The present thermal state of the moon may involve at least some partial melting through all the lunar interior deeper than 200 km. Such a thermal configuration is inconsistent neither with temperatures inferred from electrical conductivity studies nor with the nonhydrostatic shape of the moon
Untangling the Recombination Line Emission from HII Regions with Multiple Velocity Components
HII regions are the ionized spheres surrounding high-mass stars. They are
ideal targets for tracing Galactic structure because they are predominantly
found in spiral arms and have high luminosities at infrared and radio
wavelengths. In the Green Bank Telescope HII Region Discovery Survey (GBT HRDS)
we found that >30% of first Galactic quadrant HII regions have multiple
hydrogen radio recombination line (RRL) velocities, which makes determining
their Galactic locations and physical properties impossible. Here we make
additional GBT RRL observations to determine the discrete HII region velocity
for all 117 multiple-velocity sources within 18deg. < l < 65deg. The
multiple-velocity sources are concentrated in the zone 22deg. < l < 32deg.,
coinciding with the largest regions of massive star formation, which implies
that the diffuse emission is caused by leaked ionizing photons. We combine our
observations with analyses of the electron temperature, molecular gas, and
carbon recombination lines to determine the source velocities for 103 discrete
H II regions (88% of the sample). With the source velocities known, we resolve
the kinematic distance ambiguity for 47 regions, and thus determine their
heliocentric distances.Comment: 44 pages, 5 figures, 16 pages of tables; Accepted by ApJ
The Arecibo HII Region Discovery Survey
We report the detection of radio recombination line emission (RRL) using the
Arecibo Observatory at X-band (9GHz, 3cm) from 37 previously unknown HII
regions in the Galactic zone 66 deg. > l > 31 deg. and |b| < 1 deg. This
Arecibo HII Region Discovery Survey (Arecibo HRDS) is a continuation of the
Green Bank Telescope (GBT) HRDS. The targets for the Arecibo HRDS have
spatially coincident 24 micron and 20 cm emission of a similar angular
morphology and extent. To take advantage of Arecibo's sensitivity and small
beam size, sources in this sample are fainter, smaller in angle, or in more
crowded fields compared to those of the GBT HRDS. These Arecibo nebulae are
some of the faintest HII regions ever detected in RRL emission. Our detection
rate is 58%, which is low compared to the 95% detection rate for GBT HRDS
targets. We derive kinematic distances to 23 of the Arecibo HRDS detections.
Four nebulae have negative LSR velocities and are thus unambiguously in the
outer Galaxy. The remaining sources are at the tangent point distance or
farther. We identify a large, diffuse HII region complex that has an associated
HI and 13CO shell. The ~90 pc diameter of the G52L nebula in this complex may
be the largest Galactic HII region known, and yet it has escaped previous
detection.Comment: Accepted to ApJ Data can be found here: http://go.nrao.edu/hrd
Stage-specific vertical distribution of Alaska plaice (Pleuronectes quadrituberculatus) eggs in the eastern Bering Sea
The stage-specific distribution of Alaska plaice (Pleuronectes quadrituberculatus) eggs in the southeastern
Bering Sea was examined with collections made in mid-May in
2002, 2003, 2005, and 2006. Eggs in the early stages of development were found primarily offshore of the 40-m
isobath. Eggs in the middle and late stages of development were found inshore and offshore of the 40-m isobath. There was some evidence that early-stage eggs occur deeper in the
water column than late-stage eggs, although year-to-year variability in that trend was observed. Most eggs were in the later stages of development; therefore the majority of spawning is estimated to have occurred a few weeks before collection—probably April—and may be highly synchronized
among local spawning areas. Results indicate that sampling with continuous underway fish egg collectors(CUFES) should be supplemented with sampling of the entire water column to ensure adequate samples of all egg stages of Alaska plaice. Data presented offer new information on the stage-dependent horizontal and vertical distribution of Alaska plaice eggs in the Bering Sea and provide further evidence that the early life history stages of this species are vulnerable
to near-surface variations in hydrographical conditions and climate forcing
On quasi-local Hamiltonians in General Relativity
We analyse the definition of quasi-local energy in GR based on a Hamiltonian
analysis of the Einstein-Hilbert action initiated by Brown-York. The role of
the constraint equations, in particular the Hamiltonian constraint on the
timelike boundary, neglected in previous studies, is emphasized here. We argue
that a consistent definition of quasi-local energy in GR requires, at a
minimum, a framework based on the (currently unknown) geometric well-posedness
of the initial boundary value problem for the Einstein equations.Comment: 9 page
An Invertible Linearization Map for the Quartic Oscillator
The set of world lines for the non-relativistic quartic oscillator satisfying
Newton's equation of motion for all space and time in 1-1 dimensions with no
constraints other than the "spring" restoring force is shown to be equivalent
(1-1-onto) to the corresponding set for the harmonic oscillator. This is
established via an energy preserving invertible linearization map which
consists of an explicit nonlinear algebraic deformation of coordinates and a
nonlinear deformation of time coordinates involving a quadrature. In the
context stated, the map also explicitly solves Newton's equation for the
quartic oscillator for arbitrary initial data on the real line. This map is
extended to all attractive potentials given by even powers of the space
coordinate. It thus provides classes of new solutions to the initial value
problem for all these potentials
Discovery of the spectroscopic binary nature of three bright southern Cepheids
We present an analysis of spectroscopic radial velocity and photometric data
of three bright Galactic Cepheids: LR Trianguli Australis (LR TrA), RZ Velorum
(RZ Vel), and BG Velorum (BG Vel). Based on new radial velocity data, these
Cepheids have been found to be members of spectroscopic binary systems.
The ratio of the peak-to-peak radial velocity amplitude to photometric
amplitude indicates the presence of a companion for LR TrA and BG Vel. IUE
spectra indicate that the companions of RZ Vel and BG Vel cannot be hot stars.
The analysis of all available photometric data revealed that the pulsation
period of RZ Vel and BG Vel varies monotonically, due to stellar evolution.
Moreover, the longest period Cepheid in this sample, RZ Vel, shows period
fluctuations superimposed on the monotonic period increase. The light-time
effect interpretation of the observed pattern needs long-term photometric
monitoring of this Cepheid. The pulsation period of LR TrA has remained
constant since the discovery of its brightness variation.
Using statistical data, it is also shown that a large number of spectroscopic
binaries still remain to be discovered among bright classical Cepheids.Comment: 9 pages, 14 figure
- …