228 research outputs found

    The Lorentz force between D0 and D6 branes in string and M(atrix) theory

    Get PDF
    We use different techniques to analyze the system formed by a D0 brane and a D6 brane (with background gauge fields) in relative motion. In particular, using the closed string formalism of boosted boundary states, we show the presence of a term linear in the velocity, corresponding to the Lorentz force experienced by the D0 brane moving in the magnetic background produced by the D6 brane. This term, that was missed in previous analyses of this system, comes entirely from the R-R odd spin structure and is also reproduced by a M(atrix) theory calculation.Comment: 13 pages, plain LaTeX; some clarifying comments and a reference adde

    Remote ischaemic preconditioning in coronary artery bypass surgery: a meta-analysis

    Get PDF
    Aim Randomised trials exploring remote ischaemic preconditioning (RIPC) in patients undergoing coronary artery bypass graft (CABG) surgery have yielded conflicting data regarding potential cardiovascular and renal protection, and are individually flawed by small sample size. Methods Three investigators independently searched the MEDLINE, EMBASE and Cochrane databases to identify randomised trials testing RIPC in patients undergoing CABG. Results Nine studies with 704 patients were included. Standardised mean difference of troponin I and T release showed a significant decrease ( 120.36 (95% CI 120.62 to 120.09)). This difference held true after excluding the trials with cross-clamp fibrillation, the study with off-pump CABG and studies using a flurane as anaesthetic agent ( 120.41 (95% CI 120.69 to 120.12), 120.38 (95% CI 120.70 to 120.07) and 120.37 (95% CI 120.63 to 120.12), respectively). A similar trend was also obtained for patients with multivessel disease ( 120.41 (95% CI 120.73 to 120.08)). The trials evaluating postoperative creatinine reported a non-significant reduction (0.02 (95% CI 120.09 to 0.13)). Moreover, the length of in-hospital stay was not influenced by the kind of treatment (weighted mean difference 0.27 (95% CI 120.24 to 0.79)). Conclusion RIPC reduced the release of troponin in patients undergoing CABG. Larger randomised trials are needed to clarify the presence of a causal relationship between RIPC-induced troponin release and clinical adverse events

    Transcellular diapedesis is initiated by invasive podosomes

    Get PDF
    Producción CientíficaDiapedesis is critical for immune system function and inflammatory responses. This occurs by migration of blood leukocytes either directly through individual microvascular endothelial cells (the “transcellular” route) or between them (the “paracellular” route). Mechanisms for transcellular pore formation in endothelium remain unknown. Here we demonstrate that lymphocytes used podosomes and extended “invasive podosomes” to palpate the surface of, and ultimately form transcellular pores through, the endothelium. In lymphocytes, these structures were dependent on Src kinase and the actin regulatory protein WASP; inhibition of podosome formation selectively blocked the transcellular route of diapedesis. In endothelium, membrane fusion events dependent on the SNARE-containing membrane fusion complex and intracellular calcium were required for efficient transcellular pore formation in response to podosomes. These findings provide insights into basic mechanisms for leukocyte trafficking and the functions of podosomes

    FASTER: Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration

    Get PDF
    The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) EU FP7 project, aims to ease the design and implementation of dynamically changing hardware systems. Our motivation stems from the promise reconfigurable systems hold for achieving high performance and extending product functionality and lifetime via the addition of new features that operate at hardware speed. However, designing a changing hardware system is both challenging and time-consuming. FASTER facilitates the use of reconfigurable technology by providing a complete methodology enabling designers to easily specify, analyze, implement and verify applications on platforms with general-purpose processors and acceleration modules implemented in the latest reconfigurable technology. Our tool-chain supports both coarse- and fine-grain FPGA reconfiguration, while during execution a flexible run-time system manages the reconfigurable resources. We target three applications from different domains. We explore the way each application benefits from reconfiguration, and then we asses them and the FASTER tools, in terms of performance, area consumption and accuracy of analysis

    Dual Resonance Model Solves the Yang-Baxter Equation

    Full text link
    The duality of dual resonance models is shown to imply that the four point string correlation function solves the Yang-Baxter equation. A reduction of transfer matrices to AlA_l symmetry is described by a restriction of the KP τ\tau function to Toda molecules.Comment: 10 pages, LaTe

    Parallelizing the Chambolle Algorithm for Performance-Optimized Mapping on FPGA Devices

    Get PDF
    The performance and the efficiency of recent computing platforms have been deeply influenced by the widespread adoption of hardware accelerators, such as Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs), which are often employed to support the tasks of General Purpose Processors (GPP). One of the main advantages of these accelerators over their sequential counterparts (GPPs) is their ability of performing massive parallel computation. However, in order to exploit this competitive edge, it is necessary to extract the parallelism from the target algorithm to be executed, which is in general a very challenging task. This concept is demonstrated, for instance, by the poor performance achieved on relevant multimedia algorithms, such as Chambolle, which is a well-known algorithm employed for the optical flow estimation. The implementations of this algorithm that can be found in the state of the art are generally based on GPUs, but barely improve the performance that can be obtained with a powerful GPP. In this paper, we propose a novel approach to extract the parallelism from computation-intensive multimedia algorithms, which includes an analysis of their dependency schema and an assessment of their data reuse. We then perform a thorough analysis of the Chambolle algorithm, providing a formal proof of its inner data dependencies and locality properties. Then, we exploit the considerations drawn from this analysis by proposing an architectural template that takes advantage of the fine-grained parallelism of FPGA devices. Moreover, since the proposed template can be instantiated with different parameters, we also propose a design metric, the expansion rate, to help the designer in the estimation of the efficiency and performance of the different instances, making it possible to select the right one before the implementation phase. We finally show, by means of experimental results, how the proposed analysis and parallelization approach leads to the design of efficient and high-performance FPGA-based implementations that are orders of magnitude faster than the state-of-the-art ones

    EXTRA: Towards the exploitation of eXascale technology for reconfigurable architectures

    Get PDF
    © 2016 IEEE. To handle the stringent performance requirements of future exascale-class applications, High Performance Computing (HPC) systems need ultra-efficient heterogeneous compute nodes. To reduce power and increase performance, such compute nodes will require hardware accelerators with a high degree of specialization. Ideally, dynamic reconfiguration will be an intrinsic feature, so that specific HPC application features can be optimally accelerated, even if they regularly change over time. In the EXTRA project, we create a new and flexible exploration platform for developing reconfigurable architectures, design tools and HPC applications with run-time reconfiguration built-in as a core fundamental feature instead of an add-on. EXTRA covers the entire stack from architecture up to the application, focusing on the fundamental building blocks for run-time reconfigurable exascale HPC systems: new chip architectures with very low reconfiguration overhead, new tools that truly take reconfiguration as a central design concept, and applications that are tuned to maximally benefit from the proposed run-time reconfiguration techniques. Ultimately, this open platform will improve Europe's competitive advantage and leadership in the field
    corecore