1,576 research outputs found

    Corotational velocity strain formulations for nonlinear analysis of beams and axisymmetric shells

    Get PDF
    Finite element formulations for large strain, large displacement problems are formulated using a kinematic description based on the corotational components of the velocity strain. The corotational components are defined in terms of a system that rotates with each element and approximates the rotation of the material. To account for rotations of the material relative to this element system, extra terms are introduced in the velocity strain equations. Although this formulation is incremental, in explicitly integrated transient problems it compares very well with formulations that are not

    How violent video games communicate violence: A literature review and content analysis of moral disengagement factors

    Get PDF
    Mechanisms of moral disengagement in violent video game play have recently received considerable attention among communication scholars. To date, however, no study has analyzed the prevalence of moral disengagement factors in violent video games. To fill this research gap, the present approach includes both a systematic literature review and a content analysis of moral disengagement cues embedded in the narratives and actual game play of 17 top-ranked first-person shooters (PC). Findings suggest that moral disengagement factors are frequently embedded in first-person shooters, but their prevalence varies considerably. Most violent video games include justifications of the portrayed violence, a distorted portrayal of consequences, and dehumanization of opponents. Implications of the findings for research on violent games are discussed

    Spiral bevel and circular arc helical gears: Tooth contact analysis and the effect of misalignment on circular arc helical gears

    Get PDF
    A computer aided method for tooth contact analysis was developed and applied. Optimal machine-tool settings for spiral bevel gears are proposed and when applied indicated that kinematic errors can be minimized while maintaining a desirable bearing contact. The effect of misalignment for circular arc helical gears was investigated and the results indicted that directed pinion refinishing can compensate the kinematic errors due to misalignment

    External-Memory Computational Geometry

    Get PDF
    (c) 1993 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper we give new techniques for designing e cient algorithms for computational geometry prob- lems that are too large to be solved in internal mem- ory. We use these techniques to develop optimal and practical algorithms for a number of important large- scale problems. We discuss our algorithms primarily in the context of single processor/single disk machines, a domain in which they are not only the rst known optimal results but also of tremendous practical value. Our methods also produce the rst known optimal al- gorithms for a wide range of two-level and hierarchical multilevel memory models, including parallel models. The algorithms are optimal both in terms of I/O cost and internal computation

    Don't bleach chaotic data

    Full text link
    A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is ``bleached''), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed.Comment: 12 dense pages (82K) of ordinary LaTeX; uses macro psfig.tex for inclusion of figures in text; figures are uufile'd into a single file of size 306K; the final dvips'd postscript file is about 1.3mb Replaced 9/30/93 to incorporate final changes in the proofs and to make the LaTeX more portable; the paper will appear in CHAOS 4 (Dec, 1993

    Multi-objective constrained optimization for energy applications via tree ensembles

    Get PDF
    Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives, e.g. economic gain vs. environmental impact. Moreover, a large number of input variables and different variable types, e.g. continuous and categorical, are challenges commonly present in real-world applications. In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions. This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems with heterogeneous variable spaces for which underlying system dynamics are either too complex to model or unknown. In an extensive case study comprised of synthetic benchmarks and relevant energy applications we demonstrate the competitive performance and sampling efficiency of the proposed algorithm compared to other state-of-the-art tools, making it a useful all-in-one solution for real-world applications with limited evaluation budgets

    A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Get PDF
    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects

    Tracing the temporal evolution of clusters in a financial stock market

    Get PDF
    We propose a methodology for clustering financial time series of stocks' returns, and a graphical set-up to quantify and visualise the evolution of these clusters through time. The proposed graphical representation allows for the application of well known algorithms for solving classical combinatorial graph problems, which can be interpreted as problems relevant to portfolio design and investment strategies. We illustrate this graph representation of the evolution of clusters in time and its use on real data from the Madrid Stock Exchange market.Comment: 22 pages, 3 figures (submitted for publication

    The effect of cross rolling on the microstructure of ferrous and non-ferrous metals and alloys

    Get PDF
    The cross rolling is the one of most perspective method of refinement microstructure metals by severe plastic deformation method. This method gives ability to get the long length billets. However, deformation and trajectories of the metal is very heterogeneous across the section of the rolled piece. This paper presents the finite element method (FEM) simulation of hot cross rolling and experimental study of the effect of the cross rolling on a different threeroll mills on the microstructure of ordinary structural alloy steel, stainless steel and technical copper in different zones of the bar. Analysis showed significant structure refinement in all cases. The best result was achieved on the stainless steel, and shown the formation of equal-axis ultra-fine-grain structure on the bar periphery
    corecore