74 research outputs found

    Non-destructive postharvest quality monitoring of different pear and sweet pepper cultivars

    Get PDF
    Postharvest quality changes of two pear and five sweet pepper varieties during cold storage (2±1 °C and 10±1 °C, respectively) and shelf-life (22±2 °C and 20±1 °C, respectively) by non-destructive optical methods (laser backscattering imaging, chlorophyll fluorescence analysis, surface colour measurement) and texture analysis methods (acoustic impulse-response technique, impact method) were determined and monitored. The rate of the change of ‘Conference’ pears’ Fv/Fm chlorophyll fluorescence parameter was lower than for ‘Bosc kobak’, referring to the cultivar characteristic and photosynthetically active chlorophyll content related maturity and colour change. Acoustic and impact stiffness decreased during shelf-life, referring clearly to temperature related textural change. Taking into account the seven different measuring wavelengths (650–1064 nm), laser scattering parameters showed significant and cultivar dependent changes versus time during cold storage and shelf-life. The used non-destructive methods were found to be suitable for objective sweet pepper quality determination. Cold storage combined shelf-life resulted in a relatively longer shelf-life, with a lower intensity and rate of quality decrease in time, based upon mass loss, stiffness, surface colour, and chlorophyll fluorescence changes. ‘Gigant’, ‘Carma’, and ‘Kárpia’ cultivars were found to be favourable, but ‘Kais’ and ‘Kun’ hot pepper samples were really sensitive to quality degradation

    Quality changes of pear during shelf-life

    Full text link

    Effect of 1-methylcyclopropene on ‘Bosc Kobak’ pears

    Get PDF
    1-Methylcyclopropene (1-MCP) is the active component of the SmartFresh Quality System. By the application of the 1-MCP compound, quality of the harvested pears can be preserved longer during the normal cold storage. In our work, the effectiveness of the SmartFresh Quality System was investigated on ‘Bosc Kobak’ pears (Pyruscommunis L.) harvested at different times. The rheological changes and storage losses were measured. The effectiveness of 1-MCP depends on many variables, but our results show that the optimal harvest date and the condition of the harvested fruit are the most influential factors

    Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks

    Get PDF
    Context. Observations at sub-millimeter and mm wavelengths will in the near future be able to resolve the radial dependence of the mm spectral slope in circumstellar disks with a resolution of around a few AU at the distance of the closest star-forming regions. Aims. We aim to constrain physical models of grain growth and fragmentation by a large sample of (sub-)mm observations of disks around pre-main sequence stars in the Taurus-Auriga and Ophiuchus star-forming regions. Methods. State-of-the-art coagulation/fragmentation and disk-structure codes are coupled to produce steady-state grain size distributions and to predict the spectral slopes at (sub-)mm wavelengths. Results. This work presents the first calculations predicting the mm spectral slope based on a physical model of grain growth. Our models can quite naturally reproduce the observed mm-slopes, but a simultaneous match to the observed range of flux levels can only be reached by a reduction of the dust mass by a factor of a few up to about 30 while keeping the gas mass of the disk the same. This dust reduction can either be due to radial drift at a reduced rate or during an earlier evolutionary time (otherwise the predicted fluxes would become too low) or due to efficient conversion of dust into larger, unseen bodies.Comment: Accepted for publication in A&A Letters. 5 pages, 3 figure

    Quality changes of pear during shelf-life

    Get PDF
    The aims of our research work were the investigation of postharvest changes of pear samples (Pyrus communis cv. Bosc kobak) during combined cold storage and shelf-life (storage at room temperature), the determination of quality changes by mainly non-destructive methods, the modeling of the changes of the non-destructive parameters (acoustic, impact stiffness coefficient, chlorophyll fluorescence parameters [Fv/Fm, Fm/F0]), and multivariate statistical analysis of the measured and predicted data based on the data of the non-destructive texture analysis (acoustic and impact methods), chlorophyll fluorescence analysis and laser scattering measurement. Storage Time Equivalent Value (STEV) was calculated and introduced based on mass-loss analysis. The changes of the non-destructive parameters were analyzed vs. this virtual storage time (STEV). The changes of acoustic, impact stiffness coefficient and chlorophyll fluorescence parameters can be predicted by exponential function. The predicted time constants of the parameters were 21.0, 45.8, 47.1, 83.4, acoustic, impact stiffness coefficient, Fm/F0, Fv/Fm, respectively. The lower the time constant, the quicker is the change of the given parameter during storage, the higher is its sensitivity. By this point of view, the percentage mass loss related sensitivity to the characterization of textural changes, the predicted acoustic stiffness coefficient was found to be more sensitive than the impact stiffness coefficient. The Fm/F0 value characterized more sensibly the changes of the chlorophyll fluorescence than in the literature commonly used Fv/Fm. The non-contact laser scattering method based significant PLS models were constructed to predict the quality related pear characteristics (mechanical properties, chlorophyll fluorescence parameters)

    Breaking through: The effects of a velocity distribution on barriers to dust growth

    Full text link
    It is unknown how far dust growth can proceed by coagulation. Obstacles to collisional growth are the fragmentation and bouncing barriers. However, in all previous simulations of the dust-size evolution in protoplanetary disks, only the mean collision velocity has been considered, neglecting that a small but possibly important fraction of the collisions will occur at both much lower and higher velocities. We study the effect of the probability distribution of impact velocities on the collisional dust growth barriers. Assuming a Maxwellian velocity distribution for colliding particles to determine the fraction of sticking, bouncing, and fragmentation, we implement this in a dust-size evolution code. We also calculate the probability of growing through the barriers and the growth timescale in these regimes. We find that the collisional growth barriers are not as sharp as previously thought. With the existence of low-velocity collisions, a small fraction of the particles manage to grow to masses orders of magnitude above the main population. A particle velocity distribution softens the fragmentation barrier and removes the bouncing barrier. It broadens the size distribution in a natural way, allowing the largest particles to become the first seeds that initiate sweep-up growth towards planetesimal sizes.Comment: 4 pages, 3 figures. Accepted for publication as a Letter in Astronomy and Astrophysic

    Application of 1-MCP on apricots at different temperatures and days after harvest

    Get PDF
    The efficacy of 1-MCP on apricots at different treatment temperatures and days after harvest during 6 weeks of storage at 1 °C was investigated. On the 1st, 3rd, or 5th day after harvest, fruit were treated with 1-MCP at 1 °C for 24 hours. In order to evaluate the effect of temperature, apricots were exposed to 1-MCP at 1, 10, and 20 °C (on the 1st day after harvest). 1-MCP application reduced the ethylene and CO2 production and delayed softening. Fruit treated on the 1st day after harvest presented the highest firmness at the end of the experiment. No significant effect of treatment temperatures on apricot quality was observed. The time period between harvest and 1-MCP application could be delayed until the 5th day after harvest. Results showed that 1-MCP extended the storage life and maintained the overall quality of apricot during storage and shelf-life
    • …
    corecore