24 research outputs found

    Protein kinase TgCDPK7 regulates vesicular trafficking and phospholipid synthesis in Toxoplasma gondii.

    No full text
    Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7

    Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites.

    No full text
    International audienceThe human malaria parasite Plasmodium falciparum harbors a relict, nonphotosynthetic plastid of algal origin termed the apicoplast. Although considerable progress has been made in defining the metabolic functions of the apicoplast, information on the composition and biogenesis of the four delimiting membranes of this organelle is limited. Here, we report an efficient method for preparing highly purified apicoplasts from red blood cell parasite stages and the comprehensive lipidomic analysis of this organelle. Apicoplasts were prepared from transgenic parasites expressing an epitope-tagged triosephosphate transporter and immunopurified on magnetic beads. Gas and liquid chromatography MS analyses of isolated apicoplast lipids indicated significant differences compared with total parasite lipids. In particular, apicoplasts were highly enriched in phosphatidylinositol, consistent with a suggested role for phosphoinositides in targeting membrane vesicles to apicoplasts. Apicoplast phosphatidylinositol and other phospholipids were also enriched in saturated fatty acids, which could reflect limited acyl exchange with other membrane phospholipids and/or a requirement for specific physical properties. Lipids atypical for plastids (sphingomyelins, ceramides, and cholesterol) were detected in apicoplasts. The presence of cholesterol in apicoplast membranes was supported by filipin staining of isolated apicoplasts. Galactoglycerolipids, dominant in plant and algal plastids, were not detected in P. falciparum apicoplasts, suggesting that these glycolipids are a hallmark of photosynthetic plastids and were lost when these organisms assumed a parasitic lifestyle. Apicoplasts thus contain an atypical melange of lipids scavenged from the human host alongside lipids remodeled by the parasite cytoplasm, and stable isotope labeling shows some apicoplast lipids are generated de novo by the organelle itself

    Synthesis, Structural Elucidation, And Biochemical Analysis of Immunoactive Glucuronosyl Diacylglycerides of Mycobacteria and Corynebacteria

    Get PDF
    Glucuronosyl diacylglycerides (GlcAGroAc2) are functionally important glycolipids and membrane anchors for cell wall lipoglycans in the Corynebacteria. Here we describe the complete synthesis of distinct acyl-isoforms of GlcAGroAc2 bearing both acylation patterns of (R)-tuberculostearic acid (C19:0) and palmitic acid (C16:0) and their mass spectral characterization. Collision-induced fragmentation mass spectrometry identified characteristic fragment ions that were used to develop “rules” allowing the assignment of the acylation pattern as C19:0 (sn-1), C16:0 (sn-2) in the natural product from Mycobacterium smegmatis, and the structural assignment of related C18:1 (sn-1), C16:0 (sn-2) GlcAGroAc2 glycolipids from M. smegmatis and Corynebacterium glutamicum. A synthetic hydrophobic octyl glucuronoside was used to characterize the GDP-mannose-dependent mannosyltransferase MgtA from C. glutamicum that extends GlcAGroAc2. This enzyme is an Mg2+/Mn2+-dependent metalloenzyme that undergoes dramatic activation upon reduction with dithiothreitol

    Acetylation of Trehalose Mycolates Is Required for Efficient MmpL-Mediated Membrane Transport in Corynebacterineae

    No full text
    Pathogenic species of Mycobacteria and Corynebacteria, including Mycobacterium tuberculosis and Corynebacterium diphtheriae, synthesize complex cell walls that are rich in very long-chain mycolic acids. These fatty acids are synthesized on the inner leaflet of the cell membrane and are subsequently transported to the periplasmic space as trehalose monomycolates (TMM), where they are conjugated to other cell wall components and to TMM to form trehalose dimycolates (TDM). Mycobacterial TMM, and the equivalent Corynebacterium glutamicum trehalose corynomycolates (TMCM), are transported across the inner membrane by MmpL3, or NCgl0228 and NCgl2769, respectively, although little is known about how this process is regulated. Here, we show that transient acetylation of the mycolyl moiety of TMCM is required for periplasmic export. A bioinformatic search identified a gene in a cell wall biosynthesis locus encoding a putative acetyltransferase (M. tuberculosis Rv0228/C. glutamicum NCgl2759) that was highly conserved in all sequenced Corynebacterineae. Deletion of C. glutamicum<i> NCgl2759</i> resulted in the accumulation of TMCM, with a concomitant reduction in surface transport of this glycolipid and syntheses of cell wall trehalose dicorynomycolates. Strikingly, loss of NCgl2759 was associated with a defect in the synthesis of a minor, and previously uncharacterized, glycolipid species. This lipid was identified as trehalose monoacetylcorynomycolate (AcTMCM) by mass spectrometry and chemical synthesis of the authentic standard. The <i>in vitro</i> synthesis of AcTMCM was dependent on acetyl-CoA, whereas <i>in vivo</i> [<sup>14</sup>C]-acetate pulse–chase labeling showed that this lipid was rapidly synthesized and turned over in wild-type and genetically complemented bacterial strains. Significantly, the biochemical and TMCM/TDCM transport phenotype observed in the Δ<i>NCgl2759</i> mutant was phenocopied by inhibition of the activities of the two C. glutamicum MmpL3 homologues. Collectively, these data suggest that NCgl2759 is a novel <u>T</u>MCM <u>m</u>ycolyl <u>a</u>cetyl<u>t</u>ransferase (TmaT) that regulates transport of TMCM and is a potential drug target in pathogenic species

    The impact of defective clearance of apoptotic cells in the pathogenesis of chronic lung diseases: chronic obstructive pulmonary disease, asthma and cystic fibrosis

    No full text
    Apoptosis is an important process in the regulation of cell turnover and inflammatory responses in the lungs. Efficient clearance of apoptotic cells is a critical component of the process to avoid accumulation of apoptotic material and the subsequent development of secondary necrosis and incitement or perpetuation of inflammation. Airway and alveolar macrophages have the major role in ensuring effective clearance, but other cells including airway epithelial cells also have a role. Several recent studies have identified defects in the phagocytic capacity of macrophages obtained from subjects with chronic pulmonary diseases including chronic obstructive pulmonary disease, asthma and cystic fibrosis. There is evidence that these defects relate to levels of expression of various cell surface receptors including the mannose receptor and components of the collectin system. The defects in macrophage function are a potential target for new therapeutic interventions which may complement existing therapies. Approaches currently being pursued include the use of macrolide antibiotics, statins, exogenous surfactant proteins and mannose binding lectin. Pre-clinical studies and early phase human studies show some promise but further work is needed before these strategies emerge as established therapies.Paul N. Reynolds and Sandra J. Hodg
    corecore