67 research outputs found

    Contextualizing the China dream: a reinforced consultative Leninist approach to government

    Get PDF
    After he took over as General Secretary of the Chinese Communist Party (CCP) and as Chairman of the Central Military Commission in November 2012, Xi Jinping articulated for the first time ‘the China dream’ at ‘the road to revival’ exhibition at the National Museum in Beijing. As he did so he stressed that since the start of the reform period China had finally found the way to restore the greatness of the country and it was called ‘socialism with Chinese characteristics’.1 What Xi has revealed is not a new political system or even a new term to describe it. It is a confidence in the existing political system which, despite all its faults, he now believes is sufficiently strong, effective and robust to deliver the national revival encapsulated in his ‘China dream’. The nature of the system that Xi loosely refers to, in line with the long-standing usage after the end of the Mao Zedong era, as ‘socialism with Chinese characteristics’ gets clearer if it is set within the analytical framework of consultative Leninism

    Downregulation of SFRP5 expression and its inverse correlation with those of MMP-7 and MT1-MMP in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As negative regulators in Wnt signaling, Secreted Frizzled-Related Proteins (SFRPs) are downregulated in a series of human cancers; and specifically, some matrix metalloproteinases (MMPs), including MMP-2, MMP-7, MMP-9 and MT1-MMP, are frequently overexpressed in gastric cancer. The aim of this study is to determine the expression status of SFRP5 in gastric cancer and explore the correlation between both the expression of SFRP5 and that of these MMPs in this cancer.</p> <p>Methods</p> <p>Expression of SFRP5, MMP-2, MMP-7, MMP-9 and MT1-MMP was determined by real-time PCR, RT-PCR or Western blotting. The methylation status of <it>SFRP5 </it>was detected by Methylation-specific PCR (MSP). Cell lines with <it>SFRP5 </it>methylation were demethylated by a DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (DAC). KatoIII cells were transfected with pcDNA3.1 <it>SFRP5 </it>vector to strengthen SFRP5 expression. To abrogate SFRP5 expression in MKN1 cells, <it>SFRP5 </it>RNAi plamid was used to transfect them.</p> <p>Results</p> <p>SFRP5 expression was remarkably downregulated in 24 of 32 primary gastric cancer specimens, and even was not detectable in 5 of 8 gastric cancer cell lines. MMP-7 and MT1-MMP mRNA showed a stronger expression in these 24 specimens compared to the other 8 specimens. They also showed higher levels in gastric cancer cell lines AGS and NCI-N87 which had no SFRP5 expression, compared to MKN1 with strong SFRP5 expression. However, they were significantly downregulated, with SFRP5 expression restored in AGS and NCI-N87; and were considerably upregulated with it abrogated in MKN1.</p> <p>Conclusion</p> <p>The results indicate there are frequent occurrences of downregualtion of SFRP5 expression in gastric cancer, primarily due to <it>SFRP5 </it>methylation. It seems to be responsible for the upregulation of MMP-7 expression and MT1-MMP expression on the ground that they are inversely correlated with SFRP5 expression.</p

    Transfection of IL-10 expression vectors into endothelial cultures attenuates α4β7-dependent lymphocyte adhesion mediated by MAdCAM-1

    Get PDF
    BACKGROUND: Enhanced expression of MAdCAM-1 (mucosal addressin cell adhesion molecule-1) is associated with the onset and progression of inflammatory bowel disease. The clinical significance of elevated MAdCAM-1 expression is supported by studies showing that immunoneutralization of MAdCAM-1, or its ligands reduce inflammation and mucosal damage in models of colitis. Interleukin-10 (IL-10) is an endogenous anti-inflammatory and immunomodulatory cytokine that has been shown to prevent inflammation and injury in several animal studies, however clinical IL-10 treatment remains insufficient because of difficulties in the route of IL-10 administration and its biological half-life. Here, we examined the ability of introducing an IL-10 expression vector into endothelial cultures to reduce responses to a proinflammatory cytokine, TNF-α METHODS: A human IL-10 expression vector was transfected into high endothelial venular ('HEV') cells (SVEC4-10); we then examined TNF-α induced lymphocyte adhesion to lymphatic endothelial cells and TNF-α induced expression of MAdCAM-1 and compared these responses to control monolayers. RESULTS: Transfection of the IL-10 vector into endothelial cultures significantly reduced TNF-α induced, MAdCAM-1 dependent lymphocyte adhesion (compared to non-transfected cells). IL-10 transfected endothelial cells expressed less than half (46 ± 6.6%) of the MAdCAM-1 induced by TNF-α (set as 100%) in non-transfected (control) cells. CONCLUSION: Our results suggest that gene therapy of the gut microvasculature with IL-10 vectors may be useful in the clinical treatment of IBD

    Identification by Automated Screening of a Small Molecule that Selectively Eliminates Neural Stem Cells Derived from hESCs but Not Dopamine Neurons

    Get PDF
    BACKGROUND:We have previously described fundamental differences in the biology of stem cells as compared to other dividing cell populations. We reasoned therefore that a differential screen using US Food and Drug Administration (FDA)-approved compounds may identify either selective survival factors or specific toxins and may be useful for the therapeutically-driven manufacturing of cells in vitro and possibly in vivo. METHODOLOGY/PRINCIPAL FINDINGS:In this study we report on optimized methods for feeder-free culture of hESCs and hESC-derived neural stem cells (NSCs) to facilitate automated screening. We show that we are able to measure ATP as an indicator of metabolic activity in an automated screening assay. With this optimized platform we screened a collection of FDA-approved drugs to identify compounds that have differential toxicity to hESCs and their neural derivatives. Nine compounds were identified to be specifically toxic for NSCs to a greater extent than for hESCs. Six of these initial hits were retested and verified by large-scale cell culture to determine dose-responsive NSC toxicity. One of the compounds retested, amiodarone HCL, was further tested for possible effects on postmitotic neurons, a likely target for transplant therapy. Amiodarone HCL was found to be selectively toxic to NSCs but not to differentiated neurons or glial cells. Treated and untreated NSCs and neurons were then interrogated with global gene expression analysis to explore the mechanisms of action of amiodarone HCl. The gene expression analysis suggests that activation of cell-type specific cationic channels may underlie the toxicity of the drug. CONCLUSIONS/SIGNIFICANCE:In conclusion, we have developed a screening strategy that allows us to rapidly identify clinically approved drugs for use in a Chemistry, Manufacture and Control protocol that can be safely used to deplete unwanted contaminating precursor cells from a differentiated cell product. Our results also suggest that such a strategy is rich in the potential of identifying lineage specific reagents and provides additional evidence for the utility of stem cells in screening and discovery paradigms

    Gene Expression Profile of Neuronal Progenitor Cells Derived from hESCs: Activation of Chromosome 11p15.5 and Comparison to Human Dopaminergic Neurons

    Get PDF
    BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs) into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS). Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons

    DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Get PDF
    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use

    Phytolith Analysis for Differentiating between Foxtail Millet (Setaria italica) and Green Foxtail (Setaria viridis)

    Get PDF
    Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant
    • …
    corecore