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Partial Evaluation for Distributed XPath Query
Processing and Beyond

GAO CONG, Nanyang Technological University
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JIANZHONG LI and XIANMIN LIU, Harbin Institute of Technology

This article proposes algorithms for evaluating XPath queries over an XML tree that is partitioned horizon-
tally and vertically, and is distributed across a number of sites. The key idea is based on partial evaluation:
it is to send the whole query to each site that partially evaluates the query, in parallel, and sends the results
as compact (Boolean) functions to a coordinator that combines these to obtain the result. This approach
possesses the following performance guarantees. First, each site is visited at most twice for data-selecting
XPath queries, and only once for Boolean XPath queries. Second, the network traffic is determined by
the answer to the query, rather than the size of the tree. Third, the total computation is comparable to
that of centralized algorithms on the tree stored in a single site, regardless of how the tree is fragmented
and distributed. We also present a MapReduce algorithm for evaluating Boolean XPath queries, based on
partial evaluation. In addition, we provide algorithms to evaluate XPath queries on very large XML trees,
in a centralized setting. We show both analytically and empirically that our techniques are scalable with
large trees and complex XPath queries. These results, we believe, illustrate the usefulness and potential
of partial evaluation in distributed systems as well as centralized XML stores for evaluating XPath queries
and beyond.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Processing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Distributed XML documents, XPath queries, parallel query processing

 
 
 
 

1. INTRODUCTION

Partial evaluation (aka program specialization Jones [1996]) has been studied in the
context of programming languages as a general optimization technique. Intuitively,
given a function f (s, d) and part of its input s, partial evaluation is to specialize f (s, d)
with respect to the known input s. That is, it performs the part of f ’s computation that



Fig. 1. Investment company clientele.

Fig. 2. Tree partition and fragment tree.

depends only on s, and generates a partial answer, that is, a (residual) function f ′ that
depends on the as yet unavailable input d.

Partial evaluation has been proved useful in a variety of areas including compiler
generation, code optimization and dataflow evaluation (see [Jones 1996] for a survey).
The last of these bears sufficient connections with distributed query evaluation. This
suggests that it is worth investigating its use in parallel query processing. We focus
here on the evaluation of XPath queries.

Consider the XML tree T shown in Figure 1, which represents the clientele of an
investment company. For each client the company stores her name and the country
where she resides. Furthermore, it stores the broker(s) whom the client is using and
the market(s) in which the client trades, through the broker(s). For each such market,
the company stores the code, buying price buy, and quantity qt of stock(s) that the
client owns. In practice such trees are often partitioned into a number of subtrees,
or fragments, and are distributed over the Internet for geographical or administrative
reasons [Bremer and Gertz 2003], a setting commonly found in e-commerce, Web ser-
vices, P2P systems [Bonifati and Cuzzocrea 2006], XML data integration [Abiteboul
et al. 2002], or while managing large-scale network directories [Jagadish et al. 1999].
In Figure 1, we use dashed lines to show one possible fragmentation. The fragment
marked as F0, which includes the root of the tree, might be stored in the investment
company’s local US server (site S0). However, for tax reasons, trade data for Canadian
customers might have to be stored in a Canada-based server. Therefore, the fragment
of the tree marked as F3 is stored in a remote Canadian site S3. Similarly, the NAS-
DAQ market might require that all its own trade data are only remotely accessed and
only through recognized brokers for security concerns. Therefore fragments F2 and F4
again need to be stored in site S2 outside our investment company. The fragmentation
and distribution of the tree T are depicted in Figure 2. In spite of the reasons that lead
to fragmentation, conceptually this is still a single XML tree over which we would like
to pose queries.

Now consider Q = [//stock/code/text() =“GOOG”], a Boolean XPath query posed at site
S0. When evaluated at the root of the tree T, the query returns a single truth value,

 



true if and only if there is a client trading GOOG stock. A naive way to evaluate the
query is by first shipping fragments F1, F2, F3, F4 to site S0, assembling them with F0
into a tree, and then evaluating Q on the tree. This incurs excessive overhead of data
shipping, and worse still, may not be doable since data at some sites is not allowed
to be shipped to S0 for privacy or security reasons. Another approach is to employ
a sophisticated algorithm for evaluating XPath queries in a centralized system [Koch
2003]. This would require a single depth-first traversal of T, visiting each node once,
something we cannot expect to improve upon. However, this seemingly “optimal” ap-
proach would visit sites S0, S1, S2, S1, S0, S2, S0, S3, S0 in that order, visiting S0 four
times and S1 twice.

We approach this problem by introducing an algorithm, referred to as ParBoX, based
on partial evaluation. The algorithm partially evaluates the whole query Q, in par-
allel, on each fragment of the tree. Since a fragment contains only part of the tree,
this partial evaluation of Q on each fragment results in a partial answer to the query,
which is a Boolean expression with variables. The partial answers are all collected to
a coordinator site and are composed, yielding the final answer to Q.

The ParBoX algorithm has several desirable properties. (a) Each site is visited only
once, irrespectively of the number of fragments stored there. (b) The communication
cost is bounded by the size of the query and the number of fragments, and is indepen-
dent of the size of the XML document. (c) The total amount of computation performed
at all sites holding a fragment is comparable to the computation of the optimal central-
ized algorithm over the whole tree. (d) The algorithm does not impose any condition
on how the XML documents are partitioned, what the sizes of these fragments are, or
how they are assigned to sites.

Next consider a data-selecting XPath query Q′ = //broker[//stock/code/text() =
“GOOG”]/name. Along the same lines as before, one wants to send Q′ to every site
and partially evaluate Q′. However, as opposed to Boolean queries, the final answer to
Q′ is a set of elements rather than a single Boolean value. It is challenging to identify
precisely what elements are in the final answer at each site before they are shipped to
the coordinator. Furthermore, for data-selecting XPath queries even centralized evalu-
ation algorithms require two traversals of the tree [Koch 2003], instead of a single pass.

We develop algorithms and optimization methods for evaluating generic data-
selecting XPath queries. The proposed techniques guarantee that each site is visited
at most twice, irrespectively of the number of fragments stored there (recall that so-
phisticated centralized algorithms would require two passes of XML trees to evaluate
data-selecting queries). Moreover, the algorithm has the same worst-case computa-
tional complexity as ParBoX and optimal communication cost, in spite of its support of
more complex data-selecting queries. In particular, each site ships to the coordinator
only elements that are certainly in the answer of a query, such that the union of these
partial answers is the answer of the query.

As remarked earlier, the principles of partial evaluation have been proved useful
in a variety of areas. It is therefore not a coincidence that the algorithms we propose
here are both flexible and generic, and applicable to a variety of contexts. We illustrate
some of this flexibility by adapting our distributed algorithms to work in a centralized
environment with a single processing-thread. Lacking parallelism in the centralized
setting, our main focus shifts from evaluation times and the benefits of our techniques
manifest themselves in the form of both reduced I/O and small memory requirements
(since fragments are only accessed a fixed number of times and they can be as small
as the amount of memory allocated to us). In that sense, our algorithms address some
of the main limitations of existing centralized XML query engines like Saxon, which
suffer from the requirement that the processed XML document must fit in memory.
Of course, other popular and efficient centralized XML query processing systems, like

 



MonetDB, do not suffer from such memory limitations. However, this efficiency comes
at a cost. For a system like MonetDB to process a query over an XML document, this
document must be loaded into MonetDB, a process that is often several orders of mag-
nitude more expensive that the cost of querying the document. Our query evaluation
techniques do not impose such requirement since we can read and evaluate a query
over a (new) XML document directly from the file system without any preprocessing. As
such, our techniques are particularly useful in domains like life sciences (e.g., biology),
astronomy, and even for the management of typical XML documents corresponding to
Microsoft Office files (since PowerPoint presentations, Word files, and Excel spread-
sheets are all currently stored as XML). In all these domains, the management of XML
documents is file-system centric and no traditional XML data management systems is
yet in place (since nonexpert users often find these latter systems to be hard to use
and maintain).

To illustrate the generality of our algorithms, we also go beyond the confines of our
own implementation, and show how easily our algorithms can be adapted to work into
the widely popular Map-Reduce framework [Dean and Ghemawat 2004]. Indeed, as
a proof of concept, we offer a Map-Reduce algorithm for evaluating Boolean XPath
queries, based on partial evaluation.

To verify the effectiveness of the proposed partial-evaluation techniques in all these
contexts and for all the variations, we conduct an extensive experimental study. The
experimental results demonstrate that the proposed algorithms scale well with large
XML data and with complex XPath queries, in both the distributed setting and the
centralized context.

Taken together, the main contributions of this article are as follows. Based on par-
tial evaluation, we propose

(1) an algorithm for evaluating Boolean XPath queries,
(2) algorithms for evaluating data-selecting queries on XML data that is partitioned

and distributed, with provable performance guarantees on the number of visits,
data shipment and total computation. In addition, we provide

(3) a MapReduce algorithm for evaluating Boolean XPath queries, based on partial
evaluation,

(4) algorithms for processing XPath queries on very large data that cannot be loaded
to memory, and

(5) an experimental study, in both distributed and centralized settings, that verifies
the effectiveness and efficiency of the partial evaluation techniques.

Organization. Section 2 presents XML tree partition and the class of XPath queries
considered in this article. Sections 3 and 4 introduce algorithms for evaluating Boolean
XPath queries and data-selecting queries in distributed settings, respectively, and de-
velop optimization techniques. The MapReduce algorithms is presented in Section 5.
Sections 6 provides algorithms for XPath evaluation on large data in the centralized
setting. An experimental study is presented in Section 7, followed by related work in
Section 8 and topics for future work in Section 9.

2. PRELIMINARIES

We next discuss partitioning of XML documents and present the class of XPath queries
studied here.

2.1. XML Tree Partitioning

We consider settings in which an XML tree T is partitioned into a set FT of disjoint
subtrees of T, or fragments. Each fragment Fi ∈ FT can be stored in a different site.

 



Fig. 3. Example fragments.

We do not impose any constraints on the partitioning: we allow arbitrary “nesting” of
fragments. Fragments can appear at any level of the tree, and different fragments may
have different sizes (in terms of number of nodes). Furthermore, we do not impose any
constraints on how the fragments are distributed.

As an example, the tree in Figure 1 consists of five fragments, FT = {F0, F1, F2,
F3, F4}, each fragment represented by a dotted polygon.

Observe that a partitioning of a tree T induces another tree, called a fragment tree,
which depicts the relationship between the different fragments of T. We use FT to
denote both the set of fragments of a tree T and the induced fragment tree. It will
be clear from the context which of the two notions we refer to. The fragment tree FT
for the tree T of Figure 1 is shown to the right of Figure 2. We call root fragment,
the fragment at the root of the fragment tree that also contains the root of tree T. In
Figure 2, the root fragment is fragment F0.

Given two fragments Fj and Fk, we say that Fk is a subfragment of Fj if Fk is a child
of Fj in the fragment tree. If Fk is a subfragment of Fj then there exists a node v ∈ Fj
such that the root node w of Fk is a child of v in the original tree T. For example,
in Figure 1, fragment F2 is a subfragment of F1, which, in turn, is a subfragment of
fragment F0. In the original tree T, node broker of fragment F1 is the parent of root
node market of fragment F2.

Each fragment is possibly stored in a different site, as shown to the right of Figure 2.
For example, fragment F3 is stored in site S3 while both fragments F2 and F4 are in site
S2. Given the distribution of fragments, we need to maintain the relationship between
a fragment and its subfragments so as to preserve the structure of the original tree
T. To this end, given a fragment Fj and its subfragment Fk, we add a virtual node
in Fj, which we label as Fk, in place of the missing tree fragment Fk. Under normal
circumstances, while traversing fragment Fj, we know that if we reach the virtual
node Fk, we need to “pass control” to the site holding fragment Fk in order to continue
the traversal of the tree. For example, in Figure 3(a) fragment F0 has virtual nodes
representing fragments F1, F3, and F4. While traversing fragment F0 in site S0, when
we reach virtual node F4, we know that the control for the traversal of the tree must
pass to site S2 holding fragment F4, shown in Figure 3(b).

We refer to a fragment that has no subfragments as a leaf fragment. In Figure 3(b),
fragment F4 is a leaf fragment and therefore it has no virtual nodes.

2.2. XPath

We consider a class of XPath queries, denoted by X , that is defined as follows:

Q := ε | A | ∗ | Q//Q | Q/Q | Q[q],
q := Q | q/text() = str | q/val() op num |¬q | q ∧ q | q ∨ q,

 



where Q is a path expression defined in terms of the empty path ε (self ), label A (tag),
wildcard ∗, child ‘/’, the descendant-or-self-axis ‘//’, and qualifier [q]. In the qualifier
q, str is a string constant, op stands for one of the arithmetic comparison operators
=, �=,<,≤,>,≥, num is a number, and ¬,∧,∨ are the Boolean negation, conjunction
and disjunction operators, respectively.

For example, to get the names of brokers through which GOOG stocks are purchased,
but no YHOO stocks, we issue query

Q1: //broker[//stock/code/text() =“GOOG” ∧ ¬(//stock/code/text() = “YHOO”)]/name.

At a context node v in an XML tree T, the evaluation of a query Q at v, denoted by
val(Q, v), yields the set of nodes of T reachable via Q from v. On a centralized XML
tree T, that is, when T is not decomposed and distributed, val(Q, r) can be computed
in O(|T| |Q|) time [Gottlob et al. 2002], where r is the root of T.

The class X of queries subsumes twig queries [Bruno et al. 2002; Ramanan 2002].
Although X supports only the self, child and descendant XPath axes, this usually suf-
fices since the majority of XPath queries use the downward axes [Ives et al. 2002].

We also consider the class of Boolean XPath queries in X , denoted by XBL. A query
in XBL is of the form ε[q] or simply [q], where [q] is defined as before. For example, for
the query Q1 given earlier, [Q1] is a query in XBL.

At a context node v in an XML tree T, a query [q] evaluates to a truth value,
denoted by val(q, v), indicating whether q is satisfied at v, that is, whether ε[q] is
empty. Boolean XPath queries are commonly used, for example, in publish-subscribe
systems [Altinel and Franklin 2000] and LDAP directories [Smith and Howes 1997].

We convert each query Q in X to a normal form β1/ . . . /βn, where βi is one of A, ∗,
// or ε[q]. Function normalize(Q) inductively normalizes, in linear-time, a query Q as
follows:

normalize(ε) = ε; similarly for ‘∗’, ‘//’ and A;
normalize(Q1/Q2) = normalize(Q1)/normalize(Q2);
normalize(Q[q]) = normalize(Q)/ε[normalize(q)];
normalize(Q/text() = ‘str’) = normalize(Q)/ε[text() = ‘str’];
normalize(Q/val() = ‘num’) = normalize(Q)/ε[val() = ‘num’];
normalize(q1 ∧ q2) = normalize(q1) ∧ normalize(q2); similarly for q1 ∨ q2 and ¬q1;
normalize(ε[q1]/ . . . /ε[qn]) = ε[normalize(q1) ∧ . . . ∧ normalize(qn)];

where the last rule is to combine a sequence of ε’s into one. Hereafter, we only consider
normalized X queries.

By striking out all the qualifiers from a normalized query Q = β1/ . . . /βn, we get
what we refer to as the selection path of Q, the form η1/ . . . /ηn, where ηi is A, ε, ∗, or //.
For example, the selection path of query Q1 is //broker/name.

For reasons that will become clear in the next section, we decouple the evaluation
of qualifiers for each query Q, from the evaluation of its selection path. We use a
vector-based representation of our queries. More specifically, we use a vector SVect(Q)
to store the prefixes of the selection path η1/ . . . /ηn, such that SVect(Q)[i] indicates
the query η1/ . . . /ηi. Obviously, vector SVect(Q) is linear in the size of Q. We use
another Boolean vector QVect(Q) to store the list of all subqueries of the qualifiers of
Q. We sort QVect(Q) in a topological order such that for any subqueries q1, q2, if q1 is a
subquery of q2 then q1 precedes q2 in QVect(Q). Again, vector QVect(Q) is linear in the
size of Q.

Example 2.1. Consider query
Q = client[country/text() = “US”]/broker[market/name/text() = “NASDAQ”]/name,

 



which returns the name of brokers of US clients that trade in the NASDAQ market.
Then normalize(Q) is

client/ε[country/ε[text()= “US”]]/broker/ ε[market/name/ε[text() = “NASDAQ”]]/name

We decouple the selection path /client/broker/name of the query from the qualifiers
[∗/ε[country/ε[text() =“US”]] and [∗/ε[market/name/ε[text() = “NASDAQ”]]. Then, vec-
tors SVect(Q) and QVect(Q) are as follows:

SVect(Q) = [q1, q2, q3] where
q1 = client, q2 = q1/broker, q3 = q2/name
QVect(Q) = [q1, q2, q3, q4, q5, q6, q7, q8, q9], where
q1 = country, q2 = [text()=“US”], q3 = q1/ε[q2], q4 = ∗/ε[q3], q5 = name,
q6 = [text()=“NASDAQ”], q7 = q5/ε[q6], q8 = market/q7, q9 = ∗/ε[q8],

where the first four entries in QVect(Q) are for the first qualifier, while the others are
for the second. Note that the subqueries of a Boolean vector correspond to the elements
of the Boolean vector.

3. DISTRIBUTED EVALUATION OF BOOLEAN QUERIES

We first focus on evaluating Boolean XPath queries in the distributed setting. Consider
an XBL query q submitted to a site S, referred to as the coordinating site. Query q is to
be evaluated at the root of a partitioned and distributed XML tree T.

A naı̈ve evaluation strategy is to first collect all the fragments of tree T identi-
fied by the fragment tree ST at the coordinating site, and then use a centralized algo-
rithm, for instance, the algorithm of Gottlob et al. [2002]. We refer to this approach as
NaiveCentralized. This approach is efficient once the coordinating site gets all the data.
However, the price is that large fragments are sent over the network, each time that a
query is evaluated. In addition, since the coordinating site must store these fragments
during the evaluation of q, the benefits gained by distributing large XML trees over a
network are alleviated. Moreover, privacy and security concerns may prevent certain
sites from releasing their data to another site.

A better solution, referred to as NaiveDistributed, is to customize a centralized eval-
uation algorithm so that it works in a distributed fashion. We know that a Boolean
XPath query can be evaluated on a single site via a single traversal of the tree T. We
can use the information from the fragment tree ST to perform a distributed bottom-up
traversal of tree T. To do this, we need to pass certain information between the sites
in the fragment tree ST , as the distributed computation is passed forth and back from
a fragment Fi in site Sj to one of its subfragments Fk in site Sl. For example, consider
the fragments and fragment tree in Figure 2. As we compute the query for fragment
F0 in site S0, we need to pass the control of computation to fragment F1 in site S1. At
the same time, site S0 has to wait for this computation to finish before it continues
with fragment F4 in site S2.

While this distributed algorithm does not require any transmission of fragments, it
has two shortcomings. First, for a site Si to finish processing its fragment Fj, it has
to wait for all the other sites that hold subfragments of Fj to finish. Therefore, the
distributed algorithm actually follows a sequential execution and does not take advan-
tage of parallelism. Second, a site is visited as many times as the number of fragments
stored in it. In our example, site S2 needs to be visited twice, since it holds fragments
F2 and F4. For each of these visits, site S2 has to exchange a number of messages,

 



Fig. 4. ParBoX algorithm executed at coordinating site.

resulting in increased network traffic, and its processor has to switch context once per
fragment.

To overcome these limitations, we propose next the Parallel Boolean XPath (ParBoX)
evaluation algorithm, based on partial evaluation. The ParBoX Algorithm guarantees
the following: (1) Each site is visited only once, irrespectively of the number of frag-
ments stored in it. (2) Query processing is performed in parallel, on all the participat-
ing sites. (3) The total computation on all sites is comparable to what is needed by the
best-known centralized algorithm. (4) The total network traffic is determined by the
size of the query rather than the XML tree.

3.1. The ParBoX Algorithm

The algorithm is shown in Figure 4 and Figure 5. It is initiated at the coordinating
site, which, we assume w.l.o.g. to be the site storing the root fragment of the tree T
over which the XBL query q is evaluated. The algorithm consists of three stages:

Stage 1. Initially (lines 1–2 of Procedure ParBoX in Figure 4), the coordinating site
uses the fragment tree ST to identify which other sites hold fragments of tree T. In our
example, the coordinating site S0 uses the fragment tree in Figure 2 to identify sites
S1, S2 and S3.

Stage 2. The coordinating site along with all the sites identified in the first stage
evaluate, in parallel, the same input query q on all their assigned fragments (Proce-
dure evalQual, Figure 5). Since fragments are parts of the tree T, query evaluation on
each fragment returns a partial answer to the query q.

Stage 3. Finally (lines 5–7 of Procedure ParBoX), the coordinating site collects
the partial answers from all the participating sites and all the fragments; it then
composes them to compute the answer to query q.

We now describe the two crucial components of the algorithm: (a) how to compute
partial answers in parallel (in Stage 2), and (b) how to assemble the partial answers
to obtain the answer to query q (in Stage 3).

Partial evaluation. There is a dependency relation between partial evaluation pro-
cesses for the query q on different fragments of the XML tree T. To see this, consider
an efficient evaluation of q over T via a single bottom-up traversal of T. During the
traversal, at each node v we compute the values at v of all the subqueries QVect(q)
of query q, where QVect(q) is described in Section 2.2. This computation requires the
(already computed) values of the QVect(q) subqueries at the children of v. At the end
of the traversal, the answer to query q is computed by using the values of the QVect(q)

 



Fig. 5. ParBoX algorithm executed at participating site.

queries at the root of the tree. More specifically, the answer to q is the value of the last
query in QVect(q).

Consider now Figure 3 which shows the fragments of the XML tree in Figure 1.
These are the trees over which the sites must compute the query q. Recall that in

 



these fragments some of the leaves are virtual nodes, that is, they are pointers to other
fragments that reside in other sites. For example, in fragment F1 there is a virtual leaf
node marked by F2, while fragment F0 has three virtual leaves, one for fragment F1,
one for F3 and one for F4. In accordance to the strategy given before, at each site S
and for each fragment F, we need to perform a bottom-up evaluation of query q. But
how can we compute, during the traversal, the values of the QVect(q) subqueries at
the virtual nodes? The values of the QVect(q) subqueries are unknown for these nodes
and, under normal circumstances, until we learn these values from another site we
cannot proceed with the evaluation.

We propose a technique to decouple the dependencies between partial evaluation
processes and thus avoid unnecessary waiting, by introducing Boolean variables,
one for each missing value of each QVect(q) subquery at each virtual node. Using
these variables, the bottom-up evaluation procedure is given in Figure 5. Proce-
dure bottomUp considers the root of a fragment Fj and a list qL of subqueries that
is essentially the QVect(q) of the initial query q. Recursive calls of the procedure are
used to perform the bottom-up traversal of the tree Fj (line 2). At each node v, the
procedure computes the “values” of qL at v and stores the results of the computation
in a vector QVv which is of the same size as list qL . Note that these “values” are
actually Boolean formulas with those variables introduced at the virtual nodes. The
computation of the qL values at v requires the values of qL computed in the children
and descendants of v. We save these values (lines 3–5) by maintaining only two ad-
ditional vectors, namely vectors QCVv and QDVv, that are of the same size as vector
QVv. Intuitively, for each subquery q′ in qL , QCVv(q′) is true if and only if there ex-
ists some child u of v such that QVu(q′) is true, and similarly, QDVv(q′) is true if and
only if either QVv(q′) is true or there exists some descendant w of v such that QVw(q′)
is true.

Given a query qi ∈ qL at a node v, the computation of the value of qi depends on
the structure of qi. We consider different cases (lines 6–17) of the structure based on
the normal form given in Section 2.2. For example, if query qi is of the form text() = str
(line 10), then its value is true if the text content of node v is equal to the string
str, and is false otherwise. More interesting is the case where qi is of the form ∗/q j
(line 11). Then, the value of qi at node v is equal to the disjunction of the values of
query q j at the child nodes of v. Due to the recursive evaluation, the value of the dis-
junction has already been computed in QCVv(q j). Similarly, when qi is //q j (line 13),
the value of qi at node v is the disjunction of QVv(q j) and QDVw(q j)’s for the children
w of v, which have again been computed by the bottom-up processing order follow-
ing the list qL of subqueries. Finally, when qi is of the form q j ∧ qk, the value of qi
is the conjunction of the values of queries q j and qk. If queries q j and qk had sim-
ple Boolean values as answers, then this computation would be trivial. However, we
note that a distinguishing characteristic of the procedure is that variables are part
of our evaluation. Therefore, we compose Boolean values with variables or compose
Boolean variables with other Boolean variables to create more complex formulas. Pro-
cedure compFm is responsible for composing, for each query, the truth values and/or
formulas necessary to compute the value of the query. Depending on the value of the
operator op it computes f1 op f2, which yields either a Boolean value or a Boolean
formula.

Example 3.1. Consider an XBL query [q], where q is defined as //stock[code/
text()=“YHOO”]. By normalizing [q] (see Section 2.2) we get:

QVect([q]) = [q1, q2, q3, q4, q5, q6, q7], where
q1=code, q2=[text()=“YHOO”], q3=q1/ε[q2], q4=stock, q5=q4/ε[q3], q6=//q5, q7=∗/ε[q6]

 



Evaluating the (sub-)queries in QVect([q]) for the F1 fragment nodes results in the
following QVv vectors:

— QVname =< 0, 0, 0, 0, 0, 0, 0 >

— QVF2 =< x1, x2, x3 = x1 ∧ x2, x4, x5 = x4 ∧ x3, x6 = dx5, x7 = x6 >

— QVbroker =< 0, 0, 0, 0, 0, dx5, dx5 >

We use 0’s and 1’s to represent the false and true values while xi’s, cxi’s and dxi’s repre-
sent distinct variables in the QVF2 , QCVF2 and QDVF2 vectors, respectively, of virtual
node F2. Note that for each (sub-)query of F2 we introduce a new variable. We use Pro-
cedure bottomUp to partially compute the values of the introduced variables, creating
a system of Boolean equations.

Observe the following. First, processing at each site invokes Procedure bottomUp for
each fragment Fj stored at the site (see Procedure evalQual). For each such fragment,
Procedure bottomUp returns a single triplet (QVFj, QCVFj, QDVFj) of vectors that
store the (sub-)query values for the root of fragment Fj, for its children and its descen-
dants, respectively. Each site sends the computed triplet(s) to the coordinating site and
concludes its computation. Second, in addition to the triplets associated with virtual
nodes in a fragment, bottomUp needs only two triplets in total in its process: one for
the current node (QVv, QCVv, QDVv) and one for its children (QVw, QCVw, QDVw),
rather than assigning a triplet to each node.

Example 3.2. Consider the query from our previous example. At the end of the
second phase the following triplets are available to the coordinating site S0:

— QVF0 =< 0, 0, 0, 0, 0, dy5 ∨ dz5 ∨ dk5, dy5 ∨ dz5 ∨ dk5 >

QCVF0 =< z1, z2, z3, z4, z5, z6, z7 >

QDVF0 =< 1, dy2 ∨ dz2 ∨ dk2, dy3 ∨ dz3 ∨ dk3, 1,
dy5 ∨ dz5 ∨ dk5, dy5 ∨ dz5 ∨ dk5 ∨ dy6 ∨ dz6 ∨ dk6,

dy5 ∨ dz5 ∨ dk5 ∨ dy7 ∨ dz7 ∨ dk7 >

— QVF1 =< 0, 0, 0, 0, 0, dx5, dx5 >

QCVF1 =< x1, x2, x1 ∧ x2, x4, x4 ∧ x3, dx5, dx5 >

QDVF1 =< dx1, dx2, dx3, dx4, dx5, dx5 ∨ dx6, dx5 ∨ dx7 >

— QVF2 =< 0, 0, 0, 0, 0, 1, 1 >, QCVF2 =< 0, 0, 0, 1, 1, 1, 1 >, QDVF2 =< 1, 1, 1, 1, 1, 1, 1 >

— QVF3 =< 0, 0, 0, 0, 0, 0, 0 >, QCVF3 =< 0, 0, 0, 0, 0, 0, 0 >, QDVF3 =< 1, 0, 0, 1, 0, 0, 0 >

— QVF4 =< 0, 0, 0, 0, 0, 0, 0 >, QCVF4 =< 0, 0, 0, 1, 0, 0, 0 >, QDVF4 =< 1, 0, 0, 1, 0, 0, 0 > .

In the triplets, variables x j and dxj (1 ≤ j ≤ 7) are used in fragment F1 to denote
the values of virtual node F2 (see Example 3.1), while dyi, zi, dzi and dki are used in
fragment F0 for the values of the virtual nodes F1, F3 and F4, respectively.

Composition of partial answers.. In the third phase of Algorithm ParBoX, the coor-
dinating site uses the computed triplets from all the fragments to evaluate the answer
to query q. In a nutshell, the computed triplets form a linear system of Boolean equa-
tions. Using the computed vectors and the fragment tree, Procedure evalST (simple
and hence omitted) needs a single bottom-up traversal of the fragment tree to solve
the quations and find the answer to query q. Note that the vectors of leaf fragments in
the fragment tree contain no variables. This is the case for both fragments F2, F3 and
F4. During the bottom-up traversal of ST , evalST uses the Boolean values of the leaf
fragments to unify the variables of the vectors that belong to the parent fragments in
ST . The procedure continues in this fashion until it reaches the root of ST . The answer
for query q is the value of QVFroot(qlast), where Froot is the root fragment and qlast is the
last query in the qL list.

 



Example 3.3. Consider the fragment tree in Figure 2 and the vectors of the frag-
ments from our previous example. Then, the answer to query [q] is the value of the
last query in QVF0 , that is, QVF0 (q7) = dy5 ∨ dz5 ∨ dk5. A bottom-up evaluation of
Procedure evalST uses the F2-returned vectors to unify dx5 to 1; the F1-returned vec-
tors to unify dy5 to dx5, that is, to 1; the F3-returned vectors to unify dz5 to 0; and the
F4-returned ones to unify dk5 to 0. Therefore, QVF0 (q7) = dy5 ∨ dz5 ∨ dk5 = 1 and the
query [q] evaluates to true.

3.2. Analysis

For the complexity of Algorithm ParBoX, we consider its communication cost as well as
the total and parallel computation costs for evaluating a query q on a partitioned and
distributed tree T. The total computation cost is the sum of the computation performed
at all the sites that participate in the evaluation. In contrast, the parallel computation
cost is the time needed for evaluating the query at different sites in parallel. Since
a large part of the evaluation is performed in parallel, the parallel computation cost
more accurately describes the performance of the algorithm.

We use the following notations: F denotes the set of all fragments of the original
tree T, and F j ⊆ F denotes the subset of fragments of T that are subfragments of
fragment Fj. We use card(X ) to denote the cardinality of a set X .

Total network traffic. Observe that each site appearing in the fragment tree ST
of tree T is visited only once, when the coordinating site sends the input query q to
these sites in the first stage. For each fragment Fj in site Sj the algorithm generates
three vectors, each with O(|q|) entries. Each entry may hold a formula computed by
Procedure bottomUp, and its size depends on the number of virtual nodes in fragment
Fj, that is, card(F j), due to the variables introduced by these virtual nodes. In the worst
case, the size of the entry is in O(|F j|). Thus the communication cost for each fragment
Fj is O(|q|card(F j)) and the overall communication cost is O(|q|�card(F )

j=1 card(F j)), that
is, O(|q|card(F)) (since fragments are disjoint).

Total computation. Site S traverses each fragment Fj assigned to it only once
(through Procedure bottomUp). At each node v in a fragment, the procedure takes
O(|q|) time and therefore, the cost of the procedure on fragment Fj is O(|q||Fj|). Adding
these up for all fragments of tree T, the total amount of computation in the second
phase of the algorithm is O(|q||T|). The third phase of the algorithm solves, in linear
time, a system of Boolean equations that is of size O(|q|card(F)). Overall, the total
amount of computation of Algorithm ParBoX is O(|q|(|T| + card(F))).

Parallel computation. The cost of the second phase may differ depending on the
level of parallelism. Intuitively, as sets of fragments are assigned to different sites, the
cost of the second phase is equal to the computation cost at the site holding the set with
the largest aggregated fragment size. We use |FSi| to denote the sum of the sizes of the
fragments in site Si. Then, the time taken by the second phase is O(|q| max

Si

(|FSi|)) and

the parallel computation cost of the algorithm is O(|q|(max
Si

(|FSi|) + card(F))).

In any reasonable setting, we expect that the number of fragments to which a tree is
decomposed will be small compared to the size of the tree itself, that is, card(F) << |T|.
Thus, given a decomposition of a tree T to a set of fragments, Algorithm ParBoX has
the desirable property that the communication cost of evaluating a query q over T is
independent of the size |T| of the tree and depends mainly on the size |q| of the query.
Similarly, the total computation cost of Algorithm ParBoX becomes O(|q||T|), compa-
rable to that of the best-known centralized algorithm [Gottlob et al. 2002; Koch 2003]

 



for evaluating an XPath query q over a tree T. Furthermore, the parallel computation
cost depends only on the size of the largest aggregated fragment size assigned to a site.

4. DISTRIBUTED EVALUATION OF DATA-SELECTING XPATH QUERIES

We next present two algorithms, namely Algorithm PaX3 and its optimization Algo-
rithm PaX2, to evaluate data-selecting queries. Algorithms PaX3 and PaX2 provide
the following guarantees:

(1) Each site is visited at most three times in PaX3, and at most twice in PaX2, irre-
spectively of the number of fragments stored in it.

(2) Query processing is performed in parallel, on all the participating sites.
(3) The total computation on all sites is comparable to what of the best-known central-

ized algorithm.
(4) The total network traffic, in any practical setting, is determined by the size of the

query and the size of the query answer rather than the XML tree.
Thus, both algorithms retain all the desirable properties of ParBoX, while evaluating
generic data-selecting XPath queries, instead of just Boolean ones.

We will present first PaX3 and then we present its optimized PaX2 version. Algo-
rithm PaX3 is initiated at site SQ where the query Q is issued. We assume w.l.o.g.
that SQ stores the root fragment of the tree T. As shown in Figure 6, the algorithm
has three stages, where each stage corresponds to a single visit of a site holding tree
fragments. In turn, each visit makes a single pass of each tree fragment and therefore,
overall, algorithm PaX3 makes three passes over the tree T. More specifically:

Stage 1. We first (partially) evaluate the qualifiers of query Q, at each node of each
fragment using Algorithm ParBoX. At the end of this stage for some nodes we know
the actual value of each qualifier, while for other nodes the value for some qualifiers
is a Boolean formula whose value is yet to be determined. The value of each qualifier
(Boolean formula) is known for all nodes by the beginning Stage 2.

Stage 2. The objective of this stage is to (partially) evaluate the selection part of
query Q. Intuitively, this means that at the end of this stage, for each node of each
fragment, we know one of two things: (a) whether or not the node is part of the answer
of query Q; or (b) that the node is a candidate answer. Again, candidacy depends on
the value of a Boolean formula.

Stage 3. For this latter set of candidate nodes, we need one additional pass during
this stage to determine which candidate answer nodes are true answer nodes. At the
same time, all nodes belonging to the answer of Q are transmitted to site SQ .

Note that the ParBoX algorithm corresponds only to the first stage of PaX3. The
tricky part, namely, finding candidate answer nodes and identifying true answer
nodes, is done in Stages 2 and 3. We next present the details of these two stages.

4.1. Selection Path Evaluation

Stage 2 of Algorithm PaX3 is initiated again at site SQ by having site SQ notifying each
site Si holding a fragment Fj about the result of Procedure evalFT (Figure 6, line 6),
that is, the truth values of triplets (QVFk , QCVFk , QDVFk ) for each subfragment Fk of
Fj (Figure 6, lines 6–8). The triplets received will be used by site Si to determine the
values of qualifiers for all the nodes in Fj. As a next step, site SQ initiates the partial
evaluation of the query selection path by making a remote procedure call (Figure 6,
lines 9–10) to all the sites holding at least one tree fragment.

We now examine in detail the partial evaluation of a selection path. Consider a
query Q over T and, in particular, the selection path vector SVect(Q) of Q. An efficient

 



Fig. 6. PaX3 algorithm executed at site SQ .

evaluation of SVect(Q) over T requires a single top-down (depth-first) traversal of T
(Figure 7, Procedure topDown). During the traversal, for each node v and for each
subquery qi in SVect(Q), we decide whether or not v can be reached from the root of
the entire tree by following qi. We store the results for all subqueries of SVect(Q) in
a Boolean vector SVv associated with node v (Procedure topDown, lines 2–6). This
computation often requires to consult the (already computed) values of the SVect(Q)
subqueries at the ancestors of v. To this end, we use a stack to store the values of SVu,
for every node u that is an ancestor of v. At the same time, we make sure that the
vector at the top of the stack summarizes the information for all vectors in the stack.
Specifically, when node v is being processed, the top of the stack holds SVp, where p is
the parent of v. Then, SVv(qi) is computed as follows. If qi is a basic term A, SVv(qi)
is set true if the label of v is A (line 4 of Procedure topDown and Procedure term of
Figure 7). If qi is q j/t for some query q j and a basic term t, then SVv(qi) is true if both
SVp(q j) and term (v, t) are true. Here, function evalFM (which is similar in spirit to
compFm of ParBoX and thus not shown) is used to compute the Boolean formula of
SVp(q j) ∧ term(v, t). If qi is q j//, then SVv(qi) is true if either SVp(qi) or SVv(q j) is true
(note that SVv(q j) is already computed since it precedes qi in SVect(Q). At the end of
the computation at node v, we consult the last entry in SVv, denoted by SVv(|SVect(Q)|).
If this entry is true then node v is part of the answer for query Q and is added in the
set ans, otherwise it is not. Notice that in terms of space, our vectors are still linear
in the size of the query Q. Furthermore, by summarizing the whole stack information
at the top of the stack, there are considerable savings in terms of time since we avoid
going through the whole stack during each node computation. Also, note that unlike
ParBoX, which requires three vectors per node for the evaluation of qualifiers, here we
only maintain a single vector per node.

 



Fig. 7. PaX3 algorithm executed at participating sites.

There are two more things to consider. First, we need to consider qualifiers. Re-
call that qualifiers and selection paths are evaluated independently by Algorithm
PaX3. We maintain the relationship between the selection SVect(Q) and qualifier part
QVect(Q) of query Q through Procedure assocQual (Procedure topDown, line 7). The
procedure returns for each entry of SVect(Q) the qualifier entry in QVect(Q) whose
truth value needs to be checked. To determine this truth value, we only need to
instantiate the variables in QVv with the corresponding truth values in QVFk , for

 



subfragment Fk. These latter truth values have already been computed during Stage
1 and are known at the beginning of this stage.

Example 4.1. For simplicity, ignore for the moment the fragmentation of the tree
in Figure 1 and assume that we evaluate SVect(Q) from Example 2.1 over the three
clients of the tree. Then, the following are the SVect(Q) vectors computed for some of
the nodes:

Vectors leftmost client middle client rightmost client
SVclient < 1, 0, 0 > < 1, 0, 0 > < 0, 0, 0 >

SVbroker < 0, 1, 0 > < 0, 1, 0 > < 0, 0, 0 >

SVname < 0, 0, 1 > < 0, 0, 1 > < 0, 0, 0 >.

For the two leftmost clients all vectors are identical since for both clients the qualifiers
on client and broker evaluate to true (from Stage 1). Hence the name nodes of broker
are answers to the query, verified by the fact that SVname(|SVect(Q)|) is true. For the
rightmost client, although there exists a client/broker/name path, the vector entries
are all false since all qualifiers evaluate to false.

The second issue concerns partitioning. At the beginning of the top-down traversal,
given the root node r of a fragment Fj, we do not know the SVect(Q) vector which sum-
marizes the ancestors of r (located in some other fragment). Similar to the evaluation
of qualifiers, we address this issue by introducing Boolean variables, one for each value
of the unknown SVect(Q) vector. We initialize the stack used in the traversal to include
the vector with the variables (Procedure topDown, line 1). An immediate effect from
the introduction of variables is that for some nodes, say node v, the last entry in vector
SVv might be a Boolean formula. Since we are not sure about whether or not node v
is an answer to Q, we add v to the set of candidate answers of Q (Procedure topDown,
lines 10–11). The third stage of algorithm PaX3 will determine which of the candidate
answers is an actual answer to Q.

Similar to Stage 1, Stage 2 concludes by having each site Si returning to site SQ
a set of SVect(Q) vectors, namely, returnSet, one vector for each subfragment (virtual
node) Fk of a fragment Fj of site Si. Note that returnSet consists of at most k Boolean
vectors, where k is the number of virtual nodes in the fragment. Neither ans nor cans
is sent to SQ . At site SQ , Procedure evalFT unifies the variables in the received vectors,
through a single top-down traversal of FT .

Example 4.2. After Procedure topDown concludes in fragment F1, the following
SVect(Q) vectors are computed for the nodes in F1.

SVinit =< z1, z2, z3 >, SVbroker =< 0, z1, 0 >, SVname =< 0, 0, z1 > .

Vector SVinit is inserted into the stack in Procedure topDown (line 1). This is because
we are not sure during the parallel processing of fragments what path precedes node
broker. In this particular case, we are interested in whether the parent node of broker,
which is stored in fragment F0, is client (variable z1). Even if we know that the parent
node of broker must be client, we are not certain whether there are any qualifiers
in the parent node or whether any such qualifiers evaluate to true or false. One of
the advantages of partial evaluation is that query processing proceeds, even in the
presence of uncertainty, and information about qualifiers and selection paths is kept
local to each fragment rather than being sent to the coordinator site SQ . This results
in, as we will prove in Section 4.3, minimum network traffic while computation costs
remain optimal.

The uncertainty of what precedes node broker is propagated in both SVect(Q) vec-
tors SVbroker and SVname through Boolean variable z1. Note that node name is a

 



candidate answer due to the last entry in SVname. After Procedure topDown concludes
in all fragments, Procedure evalFT uses vector SVclient =< 1, 0, 0 > from fragment F0

to unify vector SVinit =< z1, z2, z3 > from fragment F1. Variable z1 is unified to true
and thus node name is an answer to Q.

4.2. Retrieving Query Answers

The last stage of Algorithm PaX3 is initiated at site SQ by having site SQ notifying each
site Sl holding a fragment Fk about the result of Procedure evalFT (Figuire 6, line 15),
that is, the truth values of vector SVFk . Although vector SVFk was sent to SQ from site
Si holding the parent fragment Fj of Fk, the vector is sent to Sl in which Fk is stored,
instead of Si. The received vectors are used by each site to decide which candidate
answers in cans are real answers to Q (Figure 7, Procedure collectAns). Referring to
our last example, after site SQ determines that variable z1 unifies to true, it sends
this information to fragment F1. Fragment F1 decides, in turn, that node name is an
answer to query Q and thus it sends this node back to site SQ .

4.3. Analysis

To draw comparisons with ParBoX, for the analysis of PaX3 we again consider the
communication cost of the algorithm as well as its total and parallel computation costs.
Recall that the total computation cost is the sum of the computation performed at all
the sites while the parallel computation cost is the time needed for evaluating the
query at different sites in parallel.

Communication cost. As shown in the analysis of ParBoX, the communication cost
for the first stage is O(|Q| |FT |), that is, communication is independent of the initial
tree T and it only depends on the size of Q. The second stage of PaX3 also has cost
O(|Q| |FT |), while the last stage has cost O((|Q| |FT |) + |ans|). Therefore, the total
communication cost of PaX3 is O((|Q| |FT |) + |ans|).

When we execute a query Q in a distributed environment with |FT | sites, it is ob-
vious that we are willing to pay at least the cost of transmitting our query over the
various sites (cost O(|Q| |FT |)). In addition, one cannot avoid the cost of retrieving
the actual answers to our query (cost O(|ans|)). In this sense, a communication cost
O((|Q| |FT |) + |ans|) is optimal.

Total computation cost. At each stage, each fragment Fj is traversed only once.
During the traversal, at each node v of Fj at most O(|Q|) operations are performed (one
operation per vector entry). Therefore, at each stage, the total computation for each
fragment is O(|Q| |Fj|). At the end, in each stage and overall, the total computation for
all fragments is O(|Q| |T|), which coincides with the cost of executing query Q over T
in a central site [Gottlob et al. 2002]. Therefore, the distribution of computation does
not incur extra computation costs.

Parallel computation cost. As more than one fragment can be assigned to a site,
we use |FSi| to denote the cumulative size of the fragments in site Si. As computation
is performed in parallel at all sites, the parallel computation cost at each stage is
determined by the site holding the largest cumulative fragment. That is, the parallel
computation cost for the first two stages and overall is O(|Q| max

Si

|FSi|).

Correctness. One can verify, by induction on the structure of X queries Q, that
algorithm PaX3 computes the correct answer Q(T) on any XML tree T no matter how
T is fragmented and distributed.

 



Fig. 8. The PaX2 Algorithm.

Summary. With the exception of the necessary O(|ans|) cost incurred by transmit-
ting query answers and at most three visits per site, the costs of PaX3 coincide with
those of ParBoX. In short, we have proposed an algorithm to evaluate a larger, and
more useful, fragment of queries than those considered by ParBoX yet we provided
comparable performance guarantees. Moreover, we guarantee minimum data trans-
mission since the only data transmitted by PaX3 are the actual query answers.

4.4. Improving Algorithm Pax3

We next present Algorithm PaX2, which has two stages and needs only two visits per
site, one less than PaX3.

The main idea behind algorithm PaX2 is to combine the first two stages of algo-
rithm PaX3, that is, the evaluation of qualifiers and selection paths, into a single
stage. As shown in Figure 8, the algorithm starts with site SQ , making a remote
procedure call to all the sites holding fragments of T (lines 1–2). At each such site,
Procedure evalXPath combines the partial evaluation of selection paths with that of
qualifiers, over a fragment Fj. The procedure performs a top-down (depth-first) traver-
sal of fragment Fj. At each node v of Fj, two types of computation are performed: a
preorder computation and a post-order computation. The preorder computation at v
essentially performs the computation of Procedure topDown in Figure 7. One impor-
tant difference is that unlike Procedure topDown which assumes that qualifiers have
already been computed (Figure 7, line 7), here we need to introduce variables for the
values of the yet undetermined qualifiers.

Example 4.3. Consider the query of Example 2.1. The preorder computation of the
query over the leftmost client node of fragment F0 (shown in Figure 3(a)) results in
the SVect(Q) vector SVclient =< qz1, 0, 0 >. Variable qz1 indicates that although the
node label is client, the qualifier for the node is yet to be determined. Contrast this
with Example 4.1 where, for the same node, PaX3 results in vector < 1, 0, 0 > since
the value of qualifiers has already been computed by Stage 1 of PaX3.

For a more complex example, consider the preorder computation over fragment F1.
The computation results in SVbroker =< 0, z1 ∧ qz2, 0 >. Here variable z1 is due to

 



the initialization of the vector stack (see Example 4.2), while variable qz2 is due to
the qualifier for the node that is still undetermined. In terms of the name node in F1,
SVname =< 0, 0, z1 ∧ qz2 >

The postorder computation at a node v starts once every node in the subtree rooted
at v is visited (always within a fragment). At that point, the qualifiers have been
computed for all the nodes in the subtree, through a procedure similar to ParBoX.
Using the qualifier values at node v, we can unify some of the variables introduced
during the preorder computation.

Example 4.4. Going back to the query from Example 2.1, after we traverse the sub-
tree rooted at the leftmost client node of F0, the qualifiers for the subtree rooted at
client are as follows:

QVname = <0, 0, 0, 0, 1, 0, 0, 0, 0>

QVcountry =<1, 0, 1, 0, 0, 0, 0, 0, 0>

QVF1 = <x1, x2, x3, x4, x5, x6, x7, x8, x9>

QVclient = <0, 0, 0, 1, 0, 0, 0, 0, x8>

The client node is associated only with the first qualifier (entry q4 of QVclient). Thus
we can unify variable qz1 in SVclient =< qz1, 0, 0 > (see the last example) to true,
yielding vector < 1, 0, 0 >, the same vector that PaX3 computes but only after two
passes.

For fragment F1, the qualifiers for the subtree rooted at broker are shown here:

QVbroker = <0, 0, 0, y3, 0, 0, 0, 0, y8>

QVF2 = < y1,y2, y3, y4, y5, y6, y7, y8, y9 >

Node broker is associated only with the second qualifier (entry q9 of QVbroker). Thus
we can unify variable qz2 in SVbroker =< 0, z1 ∧ qz2, 0 > (see the last example) to y8,
yielding < 0, z1 ∧ y8, 0 >, while SVname is now < 0, 0, z1 ∧ y8 >. The values for both
variables z1 and y8 will be determined in the next stage of PaX2.

Stage 1 concludes by having each site Si returning to site SQ a set of SVect(Q) and
QVect(Q) vectors, one SVect(Q) vector for each virtual node Fk of a fragment Fj of
site Si, and one QVect(Q) vector for each fragment Fj of site Si. Then at SQ Proce-
dure evalFT unifies the variables in the received vectors. Stage 2 of PaX2 is similar to
Stage 3 of PaX3. The unified vectors are sent from SQ to the appropriate sites, and the
sites return to SQ the query answers.

Example 4.5. Continuing our last example, site S1 holding fragment F1 receives the
following vectors from SQ :

SVinit =< 1, 0, 0 >, QVF2 =< 0, 0, 0, 0, 0, 0, 0, 1, 0 >

With these vectors, site S1 unifies both variables z1 (entry q1 in SVinit) and y8 (entry
q8 in QVF2 ) to true. Then the vector for node broker becomes < 0, 1, 0 > and the vector
for node name becomes < 0, 0, 1 >. Therefore, node name is in the answer of Q.

Analysis. While the worst-case complexity of algorithms PaX2 and PaX3 is the
same, PaX2 requires one less visit per fragment. Indeed, our experimental results in
Section 7 demonstrate that PaX2 outperforms PaX3.

 



Fig. 9. XPath-annotated fragment tree.

4.5. Optimization via Annotations

We present an optimization method that identifies fragments that do not contain any
nodes in the query answer. The optimization technique is used by both PaX3 and PaX2
to rule out identified fragments from any processing.

To do this, we require that each edge (Fj, Fk) of the fragment tree FT of T is anno-
tated with a simple XPath expression describing the path in T connecting the root of
fragment Fj with the root of fragment Fk. As an example, Figure 9 shows the XPath-
annotated fragment tree from our motivating example. The (F0, F4) edge is annotated
with client/broker/market since the root of fragment F4 is reachable from the clien-
tele root node through this expression. The additional XPath-annotation requirement
imposes negligible space overhead for the fragment tree FT .

To see how XPath-annotations can help during query evaluation, consider a query
Q and a top-down evaluation of the selection path of Q. Both algorithms PaX3 (in its
Stage 2) and PaX2 (in its Stage 1) adopts this strategy. We first use a top-down eval-
uation of the selection path of Q over the XPath-annotated fragment tree. Performing
such an evaluation results in a set of nodes that correspond to fragments. Each re-
turned fragment potentially contains actual tree nodes that are in the answer of Q.
Our objective is to evaluate PaX3 or PaX2 only on these fragments and skip fragments
that we know contain no nodes relevant to the answering of Q.

Example 4.6. Consider a simple query client/name over tree T, which returns the
names of all clients. Evaluating this query over the fragment tree of Figure 9 finds
fragments F0 and F3. Fragment F0 is considered since the procedure cannot determine
with certainty whether the fragment contains or not any paths satisfying the query.
Fragment F3 is considered since the procedure knows that a client subtree is included
in F3, although it is not certain whether a name node is also included. On the other
hand, the procedure determines with certainty that fragments F1, F2 and F4 should
not be considered. Fragment F1 is ruled out since the path client/broker between frag-
ments F0 and F1 does not satisfy the query. Similarly, the path client/broker/marker
from F0 to F2 and F4 does not satisfy the query and therefore, fragments F2 and F4 are
both ruled out.

XPath-annotations are used before the beginning of Stage 2 of PaX3 (resp. before
Stage 1 of PaX2) to identify fragments that are relevant to a query. Apart from ruling
out irrelevant fragments, XPath-annotations can also be used to reduce the number
of passes of PaX3 and PaX2. More specifically, if the input query Q has no qualifiers
then we can use XPath-annotations to skip the last step of both algorithm PaX3 and
PaX2. Intuitively, through the XPath-annotations we can guarantee that any candidate
answers identified by Stage 2 of PaX3 (resp. Stage 1 of PaX2) are real answers to the
query and can be sent back to site SQ . Recall from Section 4.1 that without XPath-
annotations, for each fragment, we need to initialize the stack in Procedure topDown
with variables, since we have no information about the ancestor nodes of each fragment
root. XPath annotations encapsulate precisely the information about the ancestors of

 



a fragment root and they can be used to initialize the stack in Procedure topDown with
concrete Boolean values, instead of variables. Thus every answer to query Q can be
identified with certainty.

As will be seen in Section 8, XPath annotation has been explored [Marian and
Siméon 2003; Zhang et al. 2009] for query processing. The previous discussion demon-
strates that XPath annotation is also effective in partial evaluation, as will be experi-
mentally verified in Section 7.

5. A MAP-REDUCE ALGORITHM FOR EVALUATING BOOLEAN QUERIES

MapReduce [Dean and Ghemawat 2004] is a software framework for processing huge
datasets on certain distributable problems using a large number of computers. It al-
lows distributed and parallel processing of map and reduction operations, and hence,
can be applied to huge datasets, and facilitate recovering from partial failure of servers
or storage during the operations. It has found a wide range of applications in industry.

Partial evaluation can be naturally expressed in the MapReduce model. To demon-
strate this we next present Algorithm MRParBoX (Map Reduce based ParBoX), a
MapReduce algorithm for evaluating XPath queries based on partial evaluation. To
simplify the discussion we focus on Boolean XPath queries.

5.1. The MapReduce Model

MapReduce [Dean and Ghemawat 2004] is a model for data-intensive parallel compu-
tation in shared-nothing clusters. In MapReduce, data are modeled as <key, value>
pairs, partitioned across the nodes of a cluster and stored in a DFS (Distributed File
System). The computation is expressed using two user-defined functions:

map <k1,v1> → list(<k2,v2>); reduce <k2,list(v2)> → list<k3,v3>.

The computation is distributed across the nodes of the cluster. (a) A designated coordi-
nator first partitions the input data into input splits, and each of the splits is assigned
to a machine as a map task. (b) The map function is applied to different input splits
in parallel, producing list(<k2,v2>) of intermediate <key, value> pairs. (c) The <key,
value> pairs produced in the map phase are hash-partitioned based on the key, yield-
ing partitions <k2,list(v2)>. Each of the partitions is assigned to a machine as a reduce
task. (d) The reduce function is invoked for each <k2,list(v2)>, producing <key, value>
pairs that are written to a distributed file in the DFS.

5.2. The MRParBoX Algorithm

We now present Algorithm MRParBoX, shown in Figure 10. It consists of three proce-
dures, configMRParBoX, mapParBoX and reduceParBoX, described as follows.

Procedure configMRParBoX is invoked before map or reduce functions are called. It
first loads input XBL query q and parses q into QVect (q) (lines 1–2). It then loads
fragment tree FT (line 3). All subsequent map tasks need to utilize q and FT .

Function mapParBoX takes as input a <key, value> pair, where key is the id of a
fragment F of the input XML tree T, and value is the XML content of the fragment F.
To accommodate arbitrary fragmentation strategies, we assume that the XML data are
already partitioned, as before, but remark that the algorithm can be readily extended
to process data that are not yet partitioned. The function conducts partial evaluation
on fragment F, along the same lines as ParBoX. Similar to ParBoX, for virtual leaves
in F that link to other fragments, mapParBoX uses variables to represent them and
leaves it to the reduce phase to find the true value of those variables.

More specifically, when processing a pair <k1, v1>, mapParBoX first reads v1 and
calls buildFragment to construct XML tree Fk1 (line 1), where buildFragment can be

 



Fig. 10. Algorithm MRParBoX.

Fig. 11. The sketch of MapReduce.

implemented easily by any standard XML parser. It then invokes procedure bottomUp
to evaluate qL over Fk1 (line 2), and the results are attached to the output list L2
(line 3). It assigns an intermediate constant key 1 to the Boolean formula computed
(line 3).

Function reduceParBoX takes as input <k2, list(v2)>, which is obtained by group-
ing the output of mapParBoX by key. For each pair <k2, v2>, reduceParBoX first ex-
tracts the Boolean formula from v2 (lines 1–2). It then invokes procedure evalST (see
Section 3) to compose partial answers and get the final answer to q (line 3).

Example 5.1. Continuing with Examples 3.1 and 3.2, consider the same XBL query
[q] given in Example 3.1 posed on the XML tree T shown in Figure 1. As shown in
Figure 11 (not including preprocessing by configMRParBoX), Algorithm MRParBoX
evaluates [q] over T as follows. Suppose that T has been partitioned, and the frag-
ments have been loaded into DFS and represented as <key, value> pairs. First, the
fragments are grouped and are sent to map nodes in a cluster of machines. Upon re-
ceiving the fragments assigned to it, each map node parses them into <key, value>
pairs and invokes procedure mapParBoX for each pair. As shown in Figure 11, the out-
put pairs of the mapParBoX function, which consist of vectors QVs, QCVs and QDVs
(see Examples 3.1 and 3.2), are grouped by key, and are sent to a reduce node as input.
The reduce node invokes procedure reduceParBoX to conduct partial answer composi-
tion and find the final answer to [q] in T.

 



Fig. 12. The BT-CPax Algorithm.

6. XPATH EVALUATION ON LARGE XML DOCUMENTS

Partial evaluation also finds applications in the centralized setting. The idea is to first
partition an XML file into smaller fragments that can easily fit into memory, and then
extend the partial evaluation techniques to evaluate the queries on each fragment
and compute the final answer by assembling partial results. As remarked earlier, the
benefits are twofold. First, this no longer requires to load the document into an XML
processing system. Second, it overcomes the limitations of those XML engines that
have to load (part of) an XML tree into memory to evaluate an query, and no longer
work when the data loaded exceeds the capacity of the memory.

We next present two centralized algorithms for evaluating XPath query on large
XML documents. Consider an XPath query Q and an XML tree T, which, without loss
of generality, is partitioned into n fragments FT = {F1, F2, ..., Fn}. There have already
been several proposals for partitioning an XML tree [Bordawekar and Shmueli 2004;
Kanne and Moerkotte 2006a; Kundu and Misra 1977; Lukes 1974]. Hence we shall
simply adopt one of the partitioning strategies, and focus on how to extend the partial
evaluation techniques to the centralized setting.

Similar to their distributed counterparts, the centralized algorithms need to first
evaluate the qualifiers in the query Q, and then process the selection path of Q when
the truth values of the qualifiers are available at each node of the XML tree T. In
contrast to the distributed setting, where fragments are distributed across different
sites, in the centralized setting all the fragments are in a single site. Thus, when
developing the evaluation algorithms, we have the flexibility in terms of the fragments
processing order, both for the qualifier and the selection path evaluation.

Our centralized algorithms adopt different evaluation ordering for fragments. One
of our algorithms, referred to as BT-CPaX, evaluates qualifiers bottom-up and the se-
lection path top-down. The other, TT-CPaX, evaluates both qualifiers and the selection
path top-down. We remark that the optimization techniques given earlier can be read-
ily adapted to the centralized setting.

6.1. Centralized Evaluation Algorithm BT-CPax

Algorithm BT-CPax is shown in Figure 12. Along the same lines as its distributed
counterparts, it consists of two stages, where each stage corresponds to one visit to all
fragments, described as follows.

Stage 1. This stage is to evaluate the qualifiers of the query Q, such that truth
value of each qualifier will be known for all nodes by the end of this stage. Obviously,
if a query has no qualifiers, this stage can be skipped.

We traverse the fragments bottom-up. This simplifies the evaluation of qualifiers:
the truth value of each qualifier at a node can be determined without using any

 



Fig. 13. The TT-CPax Algorithm.

Boolean variables or formulas. This is because all the children fragments of a frag-
ment Fj are traversed before Fj, that is, the truth value of qualifiers at a virtual node
(representing a child fragment of Fj) in the fragment Fj can be determined before eval-
uating the qualifiers on the nodes in Fj. Within each fragment, we use an extension of
the ParBoX algorithm of Figure 5 to evaluate the qualifiers.

Example 6.1. Consider the query Q of Example 2.1. Suppose that the fragment
tree is given in Figure 9. To evaluate Q, the first stage of BT-CPax visits the fragments
in the order F2 → F1 → F4 → F3 → F0 to evaluate the qualifiers in Q at each node. It
first visits fragment F2 and evaluate subqualifiers at each node. It then visits fragment
F1 that includes the virtual node for F2. We do not need to introduce variables for the
subqualifiers at the virtual node since we have already traversed F2, that is, the values
of vector QVect for F2 are already known.

Stage 2. This stage aims to evaluate the selection part of query Q, such that at the
end of this stage, for each node in each fragment, we know whether the node is part of
the answer to query Q. Unlike Stage 1, here we traverse the fragments top-down. As
expected, again we do not need to introduce Boolean variables or formulas to represent
the unknown values of subqueries of the selection path.

Example 6.2. Consider Example 6.1. Stage 2 of Algorithm BT-CPax visits the frag-
ments in the order F0 → F3 → F4 → F1 → F2 to evaluate the selection part of Q. It
first traverses fragment F0. When it comes to fragment F1, the initial value SVinit has
been determined to be < 1, 0, 0 > as F0 has already been processed.

6.2. Centralized Evaluation Algorithm TT-CPax

We present algorithm TT-CPax in Figure 13. It consists of two stages, as follows.

Stage 1. In this stage, we evaluate both the qualifier and selection path of query
Q in one traversal of the fragments of the XML tree. The truth value of each qualifier,
and the truth value of each selection subqueries for each node will be known or be
represented by a Boolean formula by the end of this stage.

We visit the fragments top-down. For each fragment Fj, similar to Algorithm PaX2,
we combine the evaluation of qualifiers and that of selection paths by performing a top-
down (depth-first) traversal of nodes. At each node v of Fj, two types of computation
are performed: a preorder computation for selection path evaluation and a postorder
computation for qualifier evaluation. Compared to Algorithm BT-CPax, there are clear
benefits by combining the steps. However, these benefits come at a price: we need to

 



use Boolean variables for the values of subqualifiers and subqueries that cannot be
determined at the time of node-processing.

Yet, the combination of qualifier and selection path evaluation opens the way for
optimization strategies that are not possible for BT-CPax. Indeed, by separating the
two types of evaluation, algorithm BT-CPax must evaluate all the subqualifiers at each
node. However, (sub-)qualifiers are associated with only certain subqueries or certain
nodes in an XML tree. For example, in Example 2.1, subqualifier q4 = ∗/ε[q3] is asso-
ciated with selecting subquery q1 = client, but not with the others, and subqualifier
q9 = ∗/ε[q8] is associated with selecting subquery q2 = q1/broker. Also, subqualifier
q2 = [text()=“US”] is only associated with country nodes in an XML tree. In BT-CPax the
two types of evaluation are performed in different stages. When evaluating qualifiers,
the algorithm is unaware of which subquery in the selection path the current node
will map to (if any). Thus BT-CPax must evaluate all subqualifiers at each node. In
contrast, TT-CPax does not have to do this.

When it comes to implementation, the association between subqualifiers and select-
ing subqueries can be formally modeled in terms of filtering nondeterministic finite
state automata [Fan et al. 2007]. If the truth value of a subquery at a node is false,
then there is no need to evaluate the subqualifiers associated with the subquery at
the node. Algorithm TT-CPax performs the evaluation of subqueries of selection path
in a preorder traversal, and thus we know the truth value or the Boolean formula of
subqueries at a node when we evaluate the subqualifiers in a postorder traversal. If
the truth value of a subquery at a node is false, we simply discard the subqualifiers
associated with the subquery at the node.

Example 6.3. Consider the setting in Example 6.1. Algorithm TT-CPax visits the
fragments in the order F0 → F3 → F4 → F1 → F2. In the first stage of TT-CPax,
TT-CPax combines the preorder computation for selection path evaluation and the post-
order computation for qualifier. Consider the node client in fragment F3. We know
that the node is associated only with the first qualifier (entry q4 of QVclient) and thus
at the postorder computation, we do not need to evaluate the remaining qualifiers
of QVclient in the postorder computation (and similarly for the broker node and its
associated second qualifier in entry q9 of QVclient).

Stage 2. In the second stage of TT-CPax, we compute the truth values of Boolean
formulas of subqualifiers and subqueries to determine which candidate nodes are true
answer nodes. We process the fragments in a top-down order to evaluate the Boolean
formulas in a fragment.

7. EXPERIMENTAL STUDY

We provide an experimental study of our algorithms for evaluating XPath queries in
the distributed setting (Section 7.1), the MapReduce algorithm (Section 7.2), and of
our algorithms for evaluating queries in the centralized setting (Section 7.3).

7.1. Experiments for Distributed Query Evaluation Algorithms

Experimental Setting. Our datasets consist of XML trees in which the root node is
simply called a “site,” and each child node of the root node is called an XMark [Schmidt
et al. 2002] “site.” We generated multiple XMark “sites.” In each experiment we as-
signed (fragments of) XMark “sites” to different machines.

Figure 14 shows a sample of the executed queries over our fragmented tree. The
choice of presented queries will become clear shortly. Note that we only report results
on data selecting XPath queries since they encompass Boolean queries.

 



Fig. 14. Sample queries.

Fig. 15. (Annotated) fragment trees used.

We used ten machines running Redhat Linux 9 (fragment sites), distributed over a
local LAN. Each machine has a 3GHz CPU and 1GB of memory. In all experiments,
reported times are averaged over multiple runs. For each reported time, computation
time dominates over communication time, that is, the time it takes to send query
answers to the query site is negligible compared to the time to compute these answer
by running PaX3 or PaX2. For consistency, algorithm PaX3 is always plotted using solid
lines, while PaX2 is plotted with dotted lines. During the evaluation of an algorithm,
if no XPath annotations (NA) are used then the line is plotted using a box symbol, and
otherwise it is plotted using a black diamond.

Utility of Fragmentation and Efficiency. The objective of this set of experiments is
twofold. First, we want to illustrate the benefits of fragmentation. Second, we want to
verify the efficiency and scalability (in the number of fragments) of PaX3 and PaX2, in
the presence or in the absence of fragment tree XPath annotations.

We consider a simple fragment tree like FT1, shown to the left of Figure 15. Our
conclusions carry over to more complex fragment trees (with the same number of frag-
ments) since in both PaX3 and PaX2, irrespectively of the structure of the fragment
tree and the presence of XPath annotations, a site holding a fragment at any level of
the tree communicates directly with site SQ . Each fragment in FT1 corresponds to an
XMark “site” and is assigned to a different machine. Throughout this experiment, the
cumulative size of all fragments in FT1 is constant and equal to approx. 100MB. In
more detail, in the first iteration of the experiment we consider a single fragment F0
of size 100MB, then iteration two considers two fragments F0 and F1 of 50MB each
and, in general, in iteration j we consider j fragments each of size (100/ j)MB. For
this experiment, we focus on two queries, one without qualifiers (Q1) and one with
qualifiers (Q4).

In Figure 16(a), we show the evaluation times of query Q1 at each iteration of the
experiment for algorithm PaX3. The top line in the graph shows the evaluation times
of Q1 in the absence of XPath annotations, while the bottom line uses XPath annota-
tions. Note that regardless of the presence of XPath annotations, tree fragmentation
is beneficial since as fragmentation increases query evaluation time decreases, due
to parallelism. The results also validate the analysis of Section 4 since the evaluation
(parallel computation) cost of PaX3 depends only on the maximum fragment size. Since

 



Fig. 16. Evaluation vs. Fragmentation.

the difference in maximum fragment sizes between iterations j and ( j+ 1) is 100
j×( j+1) MB,

the improvement in evaluation times between iterations starts to diminish after ap-
proximately iteration 6.

Let us now focus on the number of passes. Since query Q1 has no qualifiers, al-
gorithm PaX3 can skip the first stage (pass) and only requires two passes of each
fragment. Note that during the first iteration, when only one fragment exists (i.e.,
no actual fragmentation), PaX3 needs only to execute Stage 2 (a single pass) and can
also skip the last stage, since any candidate answers from the second phase can be
directly returned. When a second fragment is introduced in the next iteration of our
experiment, PaX3 needs two passes per fragment. This additional pass causes a minor
increase in evaluation time, as shown in the figure. The effect of parallelism outweighs
however the cost of the additional pass from the third iteration on.

We now focus on algorithm PaX2. For query Q1, PaX2 has approximately the same
evaluation time as algorithm PaX3, and thus it is not shown in the figure. To see why
this is so, note that due to the lack of qualifiers in Q1, both algorithms require two
passes over each fragment. The situation is different however, for a query like Q4, as
shown in Figure 16(b). Due to qualifiers, algorithm PaX3 requires three passes per
fragment, while PaX2 requires only two. The figure shows the savings coming from
combining the first two passes of PaX3 into one pass in PaX2.

We now consider the effect of XPath-annotation optimization. XPath annotations are
used in PaX3 to determine already at the second stage whether a candidate answer is
a real answer. In light of this, as shown in Figure 16(a), the evaluation time of PaX3
is almost reduced by half. Thus we save the cost of Stage 3, which is now skipped not
just in the first iteration but also in all subsequent ones. We also observe that XPath
annotations do not alter the evaluation times of Q4 in each of PaX3 and PaX2. This
is due to the ‘//’ in the selection part of Q4, which, given the fragmentation in FT1,
requires us to consider all the fragments.

Scalability with Data Size. This set of experiments is to study the scalability of
the different algorithms (in terms of query evaluation times) with the size of data.
Here we consider a more natural fragment tree for our data, shown to the right in
Figure 15. The tree contains four XMark “sites” that are fragmented in different ways.
Fragments F0 (which includes the root of the whole tree) and F3 contain two whole
XMark “sites,” while the other two XMark “sites” are in fragments F1 and F2, and are
further fragmented as shown in the figure. Unlike the previous experiment, not all
fragments have the same size. The following table shows the approximate sizes of the
various fragments in the first experiment iteration. Each fragment is assigned to a
different machine and the cumulative size of the data is 100MB.

 



Fig. 17. Evaluation time vs. Data scalability, for different queries.

Fragments F0, F1, F2, F3 F4, F5, F6, F8 F7 F9

Size 5MB 12MB 28MB 8MB

At each iteration, we increase the size of each fragment, while maintaining constant
the relative ratio of sizes between fragments. The increase is such that the cumulative
size of data is augmented by 20MB, per iteration. At the last iteration, the tree is
approximately 280MB. We consider four queries in this experiment, such that (a) two
do not have qualifiers (Q1 and Q2), while the other two do (Q3 and Q4); (b) two are
without a ‘//’ in the selection part of the query (Q1 and Q3) while the other two do
have a ‘//’ (Q2 and Q4). Therefore, the queries cover all four possible combinations
and are representative of a large class of common queries.

Figure 17(a) clearly shows that algorithm PaX3 scales linearly with the data size for
query Q1 (with or without XPath annotations). The running times for PaX2 are almost
identical with the two lines from PaX3, and therefore are not shown in the figure.
As explained earlier, this is because both algorithms execute two passes over each
fragment, due to the lack of qualifiers. The figure also illustrates that evaluation times
are reduced by more than half when XPath annotations are used. More specifically,
with the annotations in FT2, the evaluation only considers the data in fragments F0,
F1, F2 and F3. Figure 17(b) shows similar results, even in the presence of ‘//’. Here in
spite of ‘//’ in the query, due to the fragmentation in FT2, only fragments F0, F1, F2,
F3, F6 and F8 are considered during the evaluation.

Let us look now at Figure 17(c). Again, PaX3 scales linearly and moreover, its evalu-
ation times are almost identical regardless of whether or not XPath annotations are in
place. The reason for this is that here PaX3 must execute Phase 1 over all fragments,
since Q3 has qualifiers. Our experiments show that the cost of evaluating qualifiers
(Phase 1) is dominant in PaX3 and hence, gains from XPath annotations are minor for

 



Fig. 18. Total computation time for different queries.

this query, compared to the total execution time. Observe that this is not the case for
queries like Q1 and Q2 where no qualifiers are present. There, the gains are signifi-
cant, compared to the total execution time.

The second line in Figure 17(c) shows that PaX2 scales also linearly and is faster
than PaX3, illustrating again the benefits of combining the two passes into one. Note
that by using XPath annotations (third line in the figure), the evaluation time of PaX2
is improved even further. In contrast to PaX3, which computes qualifiers in all the
fragments, PaX2 is more sophisticated in that it uses XPath annotations to decide on
which fragments it executes the combined pass.

The last query considered, query Q4, has a ‘//’ in its selection path and given the
fragmentation of FT2, we must evaluate the query (and its qualifiers) over all the
fragments of FT2. Here, XPath annotations do not help in ruling out any fragments.
Therefore, as Figure 17(d) shows, the only gains in evaluation time are from combining
the two passes of PaX3 into one pass of PaX2.

Total Computation Cost. This set of experiments are to show that our optimization
method reduces in practice not only the parallel computation cost of our algorithms,
but equally importantly, it also reduces the total computation cost. This experiment
was built on the results of Experiment 2 and used exactly the same setting. To compute
the total computation cost of the partial evaluation algorithms, we sum the evaluation
times for each machine holding a fragment. Figure 18 shows the total computation
cost for each query and algorithm of Figure 17.

Consider Figures 17(a) and 18(a). At first glance, the two figures seem similar, yet
there is an important difference. By considering XPath annotations in the fragment
tree while evaluating query Q1, the parallel computation cost was almost halved.
Figure 18(a) shows that in addition, the total computation cost was reduced by two-
thirds. This is because the machines holding those fragments identified irrelevant to

 



the query did not perform any computation. Therefore, by using XPath annotations
not only the query was evaluated faster, but also it required less processing power
to do so. Similarly, for Q2 XPath annotations saved two-thirds, in terms of parallel
computation, and almost three-quarters, in terms of total computation.

Figures 18(c) and 18(d) illustrate that, in the absence of XPath annotations, in both
PaX3 and PaX2 the savings in parallel computation are proportional to the correspond-
ing savings in total computation cost. This is because without XPath annotations, both
algorithms are evaluated over each fragment of the tree. However, in the presence of
XPath annotations (last line in Figure 17(c) and 18(c)), the savings in total computation
are even more significant than those in parallel computation.

Summary. We have shown that distributing tree fragments over various sites
proves to be an effective strategy with significant reductions in evaluation time. Ob-
viously, always using the (optimized) algorithm PaX2 along with XPath annotations is
sufficient to consistently give the best results in terms of query evaluation time. We
should temper the claim about the effectiveness of XPath annotations with the follow-
ing observation. In the presence of ‘// ’ in the selection path of a query, annotations
might not help much, as shown earlier for queries like Q4. However, it is not the case
that the presence of ‘// ’ makes XPath annotations useless. As shown earlier for query
Q2, if ‘// ’ appears after a prefix of the selection path of the query that matches a path
in the XPath annotations, then a considerable number of fragments might be ruled
out, thus improving query evaluation performance.

7.2. Experiments for the MapReduce Algorithm

Experimental Settings. We next evaluate the performance of Algorithm MRPar-
BoX. We generated XML files of different sizes ranging from 10GB to 50GB using
the standard XMark data generator. We used the partition method EKM [Kanne
and Moerkotte 2006b] to partition each XML file into a number of fragments, each
bounded by a threshold K (32MB by default). The queries used in this experiment are
Boolean queries [Q] for queries Q given in Figure 14. For example, for Q1, [Q1] is
[/sites/site/people/person]. Reported runtimes are averaged over multiple runs.

The experiments were conducted on Hadoop (see further on). All experiments are
ran in a cluster with 64 computing nodes, each with a 2.63GHz CPU and 2GB RAM.
The operating system is 64-bit Red Hat Enterprise Linux AS release 4.

EKM Partition Method. The EKM [Kanne and Moerkotte 2006b] method extends
the KM method proposed in [Kundu and Misra 1977]. Given an XML tree T and a
threshold K, EKM works by processing the nodes of T bottom-up. When processing a
node v whose subtree is larger than K, EKM chooses the largest child of v to construct
a new fragment for the subtree.

Hadoop. Hadoop1 is an open-source implementation of the MapReduce framework
in Java, provided by Google. We used Hadoop 0.21.0, implemented MRParBoX in C++,
and ran MRParBoX by using Hadoop Streaming,2 which is a utility that supports cre-
ating and running Map/Reduce jobs written in C++ as the mapper or the reducer.

To present the experimental results, we briefly review the flow of Hadoop stream-
ing. Suppose that XML fragments have been organized as <key, value> pairs and
uploaded to the DFS. Given the fragments and some query as inputs, Hadoop sys-
tem automatically executes MRParBoX as follows. (1) For each XML fragment file in

1http://hadoop.apache.org
2http://wiki.apache.org/hadoop/HadoopStreaming

 



Fig. 19. Scalability of MRParBoX with Node Number and Data Size.

<key, value>, Hadoop distributes it to some map node based on the hash value of key,
and then the corresponding node invokes the map function and computes the output.
(2) Then, Hadoop sends the outputs of the map nodes to the reduce nodes. Before in-
voking the reduce function, at each reduce node, Hadoop sorts the map outputs re-
ceived. This step is called shuffle. (3) Finally, taking the sorted map outputs as input,
a reduce node generates the final result. We use Tmap to represent the time cost of
the map step, Tshuffle for the shuffle step, Treduce for the reduce step, and Ttotal for the
runtime of the entire MRParBoX process. MRParBoX needs only one reduce node, and
reduce runs after inputs have been received from all the map nodes.

Scalability with the Number of Computing Nodes. This set of experiments studies
the scalability of MRParBoX with the number of computing nodes. Fixing data size
to 30GB, we varied the number of computing nodes from 10 to 50. We stored the
data in the DFS of Hadoop, and invoked MRParBoX to evaluate the Boolean forms of
the queries given in Figure 14. The results are shown in Figure 19(a). The results
tell us that when the number of computing nodes was increased, it took less time to
evaluate the queries. This is because (a) the computing tasks of map were divided into
several parts and evaluated in parallel, resulting in significant saving in the Tmap cost;
and (b) as the node number increased, the data transferring operations in the shuffle
procedure distributed inputs by starting multiple HTTP threads that were executed in
parallel; this reduced the Tshuffle cost. Note that when the number of computing nodes
is beyond 30, adding more nodes does not yield significant improvement in evaluation
time. This is because MRParBoX uses a single reducer, which communicates with all
map nodes and hence, compromises the gains when the number of nodes increases. It
should be remarked that Treduce remained the same when the number of nodes varied
since we fixed the data set in this experiment.

Scalability with Data Size. This set of experiment is to study the scalability of
MRParBoX with the size of data. We configured Hadoop using 40 nodes, varied the data
size from 10GB to 50GB, where each dataset was partitioned into 32MB fragments. We
used the same set of Boolean queries as before. As shown in Figure 19(b), the runtime
increased linearly with the data size. The reason is as follows. For a query, (1) the
cost of map, Tmap, mainly depends on the number of fragments processed for the query,
which is linear in the size of the data, (2) the cost of shuffle between computing nodes,
Tshuffle, mainly depends on the number of query vectors produced by map function,
which is also linear with the data size, and (3) the cost of reduce is linear with the
number of the fragments.

 



Fig. 20. Scalability of MRParBoX and Effects of Fragment Size on MRParBoX.

Scale Up of MRParBoX. This set of experiments is to study the scalability of MR-
ParBoX with both the data size and the number of computing nodes. Fixing the ratio
between data size (GB) and the number of nodes as 1, we varied the data size from
10GB to 50GB, and thus the number of nodes from 10 to 50. The runtime of MRParBoX
is shown in Figure 20(a). When data size and node number increase in the same ratio,
the time cost of MRParBoX increases very slightly. The slight increase is because (a) a
single reduce node is used for the reduce step and its runtime increases with the size
of the data set, although map and shuffle procedures can be executed in parallel; and
(b) the cost of managing the computing nodes increases with the number of nodes.

Effects of Fragment Size. This set of experiments is to study the effect of the
threshold K for fragment size on the performance of MRParBoX. We fixed the data
size at 10GB, and used EKM to partition the data into fragments of different sizes by
varying K from 4MB to 64MB. Figure 20(b) shows the results on the four queries when
we varied the threshold K. Observe that the fragment sizes affect the performance of
MRParBoX, and there exists no optimal fragment size for all queries. This is because
the fragmentation and query together determine which fragments need to be visited
for the query. For instance, when K is 16MB, Q2–Q4 performed the best but Q1 showed
the worst performance. This is because Q1 was not very selective on some map node
to which several fragments are mapped, each of which is less than 16MB but the sum
of their sizes is about 16MB.

Summary. The results of this set of experiments have verified that as a natural
extension of ParBoX, MRParBoX is able to process queries on very large XML data, and
scales well with the size of data set. In other words, partial evaluation can be readily
incorporated into the MapReduce framework.

7.3. Experiments for Centralized Evaluation Algorithms

Experimental Settings. We next evaluate Algorithms BT-CPax and TT-CPax, as
well as two of their optimized versions that use the annotation-based optimization,
denoted by BT-CPax-XA and TT-CPax-XA, respectively.

We generated several XML files of different sizes ranging from 500MB to 4GB using
the standard XMark data generator. The partition method EKM [Kanne and Moerkotte
2006b] was used to partition each XML file into a number of fragments whose sizes
were bounded by a threshold K (256KB by default). In this set of experiments we used
the same queries given in Figure 14. Reported runtimes are averaged over multiple
runs of experiments. We implemented BT-CPax and TT-CPax with egcs2.91.57 C++,

 



Fig. 21. Performance of the four centralized algorithms on different queries.

and conducted the experiments on a 64-bit Windows machine with 2.93GHz Pentium
Dual CPU and 2GB memory.

Efficiency of BT-CPax and TT-CPax. In this set of experiments, we varied the data
size from 500MB to 4GB. Figure 21 shows the runtime of the four different algorithms
on the four queries of Figure 14. These results clearly show the benefit of TT-CPax over
BT-CPax. We find that for queries with qualifiers (i.e., Q3, Q4), TT-CPax outperforms
BT-CPax, and TT-CPax-XA outperforms BT-CPax-XA (see Figures 21(c) and 21(d)). That
is because BT-CPax needs to evaluate the qualifiers of a query at each node of an XML
tree, while TT-CPax evaluates selection path and qualifiers in a single pass, and uses
the results of selection path evaluations to guide whether to evaluate subqualifiers at
a node. This also explains why TT-CPax-XA outperforms BT-CPax-XA. We also find that
for queries without qualifiers i.e., Q1, Q2), BT-CPax and TT-CPax perform the same,
and so do BT-CPax-XA and TT-CPax-XA (see Figures 21(a) and 21(b)). In fact, BT-CPax
and TT-CPax (resp. BT-CPax-XA and TT-CPax-XA) are essentially the same when queries
do not have qualifiers.

The experimental results also tell us that TT-CPax-XA (resp. BT-CPax-XA) signifi-
cantly improve the performances of TT-CPax (resp. BT-CPax), showing the utility of the
annotation-based optimization.

Scalability with Data Size. The proposed centralized algorithms aim to process
very large XML documents. Figure 21 shows that when we vary the size of data

 



Fig. 22. Performance of centralized algorithms when varying fragment size.

from 500MB to 4GB, all the algorithms scale linearly with the size of data on the four
queries, including the complicated query Q4.

Effects of Fragment Size. This set of experiments is to study the effect of the
threshold K for fragment size on the performance of the four algorithms. Fixing the
data size at 4GB, we varied K from 32KB to 8MB. Figure 22 shows the results on the
four queries when we varied the threshold K. Observe that the performance of the al-
gorithms is not very sensitive to the fragment size, and all the four algorithms achieve
the best performance on all the four queries when the fragment size is in the range
between 32KB and 8MB. When the fragment size is small, both the selection path
and annotation-based optimization can be more effective in pruning (at least part of)
a fragment, thus reducing the I/O cost. However, smaller fragments also increase the
cost of managing the fragment tree and loading fragments. On the other hand, if the
fragment size is large, the chance of disregarding an entire fragment is smaller, and
thus it would be more likely to process the entire XML tree, while the cost of managing
the fragment tree is lower.

Comparison with Other Query Engines. This set of experiments aims to compares
our centralized algorithms with three well-known XML query engines, namely, Saxon
[Saxon], Galax [Galax] and MonetDB/XQuery [MonetDB]. Among the three XML query
engines, Saxon and Galax focus mainly on the evaluation of queries over file-based
XML systems as does our approach, where XML documents are stored natively in a
file system, and queries are evaluated over the individual XML files. In contrast,

 



Fig. 23. Additional Sample Queries.

MonetDB/XQuery uses a more database-centric approach where XML documents are
imported into the MonetDB system by being shredded into relational databases used
in MonetDB. As remarked in Section 1, file-based XML systems are particularly use-
ful in domains like life sciences (e.g., biology), astronomy, and even in commonly used
tools like Microsoft Office, where users would prefer to use simple file-based systems
rather than complicated full-fledged databases. Hence, next we first compare with the
two file-based systems, and then with the database-centric MonetDB/XQuery system.

Comparison with File-Based Query Engines. In this experiment, we compare the
proposed centralized algorithm with Saxon-HE 9.2 and Galax 1.0.1. Again, we used
XMark data of different sizes ranging from 100MB to 500MB. In addition to the queries
of Figure 14, we considered three new queries Q5–Q7 given in Figure 23, which are
more selective than those in Figure 14. For all the three systems, we measure the
end-to-end evaluation time. For Saxon and Galax, this includes the time of loading an
XML file into memory and the query execution time. For our own algorithms, the end-
to-end evaluation time includes the time of partitioning the XML file (using the default
threshold 256KB as the fragment size), the time of loading fragments into memory,
and the query evaluation time. We only report the time cost on TT-CPax-XA since it
outperforms the other three proposed centralized algorithms. Note that we can elim-
inate the partitioning time from the end-to-end if the input XML file has already been
partitioned, and the end-to-end in this case is denoted by “loading+query.”

The results of comparing TT-CPax-XA with Saxon are shown in Table I. When the
dataset is larger than 300M, Saxon fails to load XML files into tree because it runs out
of memory. On XML files of sizes 100-300M, Saxon outperforms TT-CPax-XA in terms
of the end-to-end time. However, note that the end-to-end time of TT-CPax-XA includes
the partitioning time (including reading an XML file, partitioning it and writing the
generated fragments to the disk), which dominates the runtime of TT-CPax-XA. If we
take out the partitioning time, the running time of TT-CPax-XA is the “loading+query,”
which is actually the counterpart of the end-to-end time of Saxon. We can also see that
in terms of the “loading+query,” TT-CPax-XA runs faster on Q5−Q7, which are more
selective than Q1−Q4.

Table II shows the result of Galax on 100MB data. It fails to run on 200M data due
to running out of memory. We can see that its performance is worse than Saxon and
TT-CPax-XA by comparing the results in Table II and Table I.

Comparison with XML Database. We next compare the centralized algorithm with
MonetDB/XQuery 4.0 64-bit version compiled with 64 bit oid. Again we used XMark
data of different sizes ranging from 500MB to 4GB, and the seven queries given in
Figures 14 and 23.

The experimental results are shown in Table III. We report both end-to-end time
and query/loading+query time for MonetDB and TT-CPax-XA. The end-to-end time of
MonetDB includes the query time and the time of importing XML file into MonetDB.
The end-to-end time of TT-CPax-XA is the same as we use to compare with other file-
based systems. The query time for MonetDB is the time of answering a query, exclud-
ing the time of importing XML file. The loading+query time for TT-CPax-XA includes
the time for loading fragments into memory and the query evaluation time.

 



Table I. Comparison with Saxon

Query Runtime (Second)

100MB 200MB 300MB 400MB 500MB

TT-CPax-XA loading+query 1.09 2.14 3.29 4.55 5.7
Q1 end-to-end 14.09 27.12 44.29 59.55 82.7

Saxon query execution 0.31 0.56 1.2 – –
end-to-end 4.42 8.88 14.8 – –

TT-CPax-XA loading+query 1.54 3.22 5.15 6.53 7.85
Q2 end-to-end 14.54 28.22 46.15 61.53 84.85

Saxon query 0.34 0.67 1.44 – –
end-to-end 4.47 8.88 14.92 – –

TT-CPax-XA loading+query 3.26 6.56 9.7 13.02 16.39
Q3 end-to-end 16.26 31.57 50.7 68.02 93.39

Saxon query 0.14 0.2 0.44 – –
end-to-end 4.27 8.3 13.95 – –

TT-CPax-XA loading+query 7.41 14.58 22.58 30.75 37.71
Q4 end-to-end 20.41 39.58 63.58 85.75 114.71

Saxon query 0.19 0.31 0.59 – –
end-to-end 4.33 8.41 14.11 – –

TT-CPax-XA loading+query 0.08 0.12 0.31 0.34 0.36
Q5 end-to-end 13.08 25.13 41.31 55.34 77.36

Saxon query 0.03 0.05 0.22 – –
end-to-end 4.16 8.34 13.84 – –

TT-CPax-XA loading+query 0.17 0.34 .41 .59 .42
Q6 end-to-end 13.17 25.36 41.41 55.59 77.42

Saxon query 0.03 0.03 0.17 – –
end-to-end 4.16 8.11 13.64 – –

TT-CPax-XA loading+query 0.13 0.16 0.31 0.42 0.42
Q7 end-to-end 13.12 25.15 41.31 55.42 77.42

Saxon query .05 .05 .09 – –
end-to-end 4.57 8.16 13.44 – –

Table II. Runtime of Galax

end-to-end Q1 Q2 Q3 Q4 Q5 Q6 Q7
Time on 100MB (secs) 198 521 121 17,400 123 115 115

In terms of the end-to-end time, TT-CPax-XA is almost always better than Mon-
etDB/XQuery on all queries for datasets of 1GB or larger. Apart from the time reported
in Table III, we also evaluated the end-to-end time on larger data set. For example,
on 10GB XMark data, we find that the end-to-end time of Q1 for MonetDB/XQuery
is 13,291 seconds, which is about 80 times of the time for 1GB data and 9 times of
the time for 4GB data. In contrast, TT-CPax-XA needs 1,652 seconds, and it increases
linearly with the size of XML files. We note that the importing time (shredding XML
files into MonetDB) dominates the end-to-end time of MonetDB while the partitioning
step dominates TT-CPax-XA.

Purely in terms of evaluation time, MonetDB performs better than TT-CPax-XA
for Q1–Q4. On queries Q5–Q7, TT-CPax-XA performs similar or better than does

 



Table III. Comparison with MonetDB/XQuery

Query Runtime (Second)

0.5GB 1GB 1.5GB 2GB 2.5GB 3GB 3.5GB 4GB

TT-CPax-XA loading+query 5.7 10.71 17.03 22.11 27 32.54 38.32 43.75
Q1 end-to-end 82.7 164 248 330 412 494 577 659

MonetDB/ query 1.50 2.41 3.34 4.08 9.63 6.06 6.54 7.35
XQuery end-to-end 61.4 166 313 431 852 1054 1233 1476

TT-CPax-XA loading+query 7.85 16.08 23.77 32.13 39.32 48.95 56.66 64.73
Q2 end-to-end 84.8 170 255 340 424 511 596 680

MonetDB/ query 1.23 1.64 2.32 2.56 8.12 3.43 3.9 4.32
XQuery end-to-end 61.2 165 312 430 851 1052 1231 1474

TT-CPax-XA loading+query 16.39 32.64 49.59 65.38 83.3 99.4 116 133
Q3 end-to-end 93.4 187 281 373 468 561 655 749

MonetDB/ query 5.74 9.06 13.45 16.8 29 24.87 27.83 32.86
XQuery end-to-end 65.7 172 323 444 871 1073 1255 1502

TT-CPax-XA loading+query 37.71 76.29 117 155 194 232 272 311
Q4 end-to-end 115 230 348 463 579 694 811 927

MonetDB/ query 5.73 9.07 13.54 16.92 35.96 25.61 27.86 32.23
XQuery end-to-end 65.65 172 323 444 878 1074 1255 1501

TT-CPax-XA loading+query 0.36 0.79 1.22 1.59 2.07 2.44 3.07 3.07
Q5 end-to-end 77.36 155 232 310 387 464 542 619

MonetDB/ query 1.29 1.66 2 2.36 8.84 3.34 3.67 4.17
XQuery end-to-end 61.21 165 311 429 851 1052 1231 1473

TT-CPax-XA loading+query 0.42 1.36 2.3 2.61 3.54 4.31 4.98 5.73
Q6 end-to-end 77.42 155 233 311 389 466 544 622

MonetDB/ query 1.13 1.49 2.16 2.4 10.03 3.34 3.73 4.26
XQuery end-to-end 61.05 165 311 429 852 1052 1231 1473

TT-CPax-XA loading+query 0.42 1.02 1.49 1.9 2.34 2.96 3.44 3.73
Q7 end-to-end 77.42 155 232 310 387 465 542 620

MonetDB/ query 1.42 2.14 2.65 2.88 12.37 3.91 4.7 5.02
XQuery end-to-end 61.34 166 312 430 855 1052 1232 1474

MonetDB/XQuery. This is because the selectivity of those queries are smaller than
those of the first four queries Q1–Q4, and thus TT-CPax-XA needs to scan fewer nodes
and fragments in precessing the queries. The selectivity here can be understood as
the number of nodes that need to be visited to answer a query, which mainly depends
on two factors. For queries having no “//” operators or qualifiers, it mainly depends on
the result size, while for the queries containing qualifiers or “//” operators, the sizes
of the subtree involved can reflect selectivity better. Consider the same query setting
for 100MB data (the case of 100MB can explain larger data as well, since they are all
generated by the standard Xmark generator). (1) For Q1 and Q5, the result sizes can
reflect the selectivity well since there are no qualifiers or “//.” Thus we count the result
sizes of Q1 and Q5 on XMark100M data: the result sizes of Q1 and Q5 are 25,500
and 1,000, respectively. The result size of Q5 is much smaller than that of Q1, that is,
TT-CPax-XA needs to visit fewer nodes to answer Q5 than Q1. This is why TT-CPax-XA
performs better on Q5 than Q1. (2) For Q2 and Q6, the subtree sizes of open auctions
and africa can reflect the selectivity well, respectively. We count their subtree sizes
and get (open auctions, 675,814) and (africa, 17,451). For these two queries, TT-CPax-
XA would need to traverse the whole subtrees under these two elements respectively,
and the subtree size of africa is much smaller than the one of open auctions. This
explains why TT-CPax-XA performs better on Q6 than Q2.

 



Summary. From the experimental results we find the following. (1) Our central-
ized algorithms BT-CPax and TT-CPax are able to process queries on large XML data,
and scale well the size of the dataset. (2) TT-CPax usually outperforms BT-CPax, and
XPath annotations are effective in improving the performance of both BT-CPax and
TT-CPax. (3) TT-CPax performs better than file-based query engines Saxon-HE 9.2 and
Galax 1.0.1 on large datasets. While Saxon-HE 9.2 and Galax 1.0.1 may fail since they
are not able to load data into memory, TT-CPax is not hampered by the limitation of
memory capacity. (4) Compared with MonetDB/XQuery 4.0 64-bit version, while Mon-
etDB does better in query evaluation time, TT-CPax takes less end-to-end time, and
has shown promises as an effective method for querying XML files, which has a wide
range of applications.

8. RELATED WORK

This work is related to previous research in the areas of partial evaluation,
XPath query evaluation in the distributed setting, and XPath queries on large XML
data.

Partial evaluation. Partial evaluation has found a wide range of applications
from compiler optimization to parallel evaluation of functional programming lan-
guages [Jones 1996]. Its relevance to query evaluation has surfaced from time to time,
most notably in the Disco system [Tomasic et al. 1996] and in query rewriting with
views and deductive databases [Godfrey and Gryz 2000; Gupta et al. 1994]. From a
traditional functional programming perspective, our work is most closely related to the
uses of partial evaluation in dataflow architectures [Jones 1996] in which one evalu-
ates some or all of the arguments of a function in parallel. The difference from our
work is that traditional functional programming neglects the benefits of partial evalu-
ation for functions accessing large data sets.

To our knowledge, partial evaluation was first explored to process (a) Boolean XPath
queries [Buneman et al. 2006] and (b) data-selecting XPath queries [Cong et al. 2007],
in the distributed setting. These have led to the algorithms of Sections 3 and 4, re-
spectively, which are among the first algorithms with performance guarantees on the
number of visits, the network traffic and the computation costs.

Distributed XPath query processing. Close to this work are [Amer-Yahia et al. 2004;
Kanne et al. 2005; Suciu 2002]: [Suciu 2002] for distributed (data-selecting) query
evaluation on semistructured data, [Kanne et al. 2005] for evaluating XPath queries
without qualifiers on tree fragments distributed over disk pages, and [Amer-Yahia
et al. 2004] for processing (aggregate and Boolean) queries on hierarchical distributed
catalogs [Smith and Howes 1997]. Some of these algorithms also have nice perfor-
mance bounds on total network traffic, computation and communication steps. These
algorithms differ from our work mostly in technical approaches. More specifically,
[Amer-Yahia et al. 2004; Kanne et al. 2005; Suciu 2002] employ query decomposition
and focus on query plan generation, which rewrite an input query into subqueries ap-
propriate for individual sites (using, e.g., the accessibility of the distributed data). In
contrast, we avoid this overhead by sending the whole query to each relevant site. In
addition, our algorithms characterize partial answers as Boolean expressions rather
than concrete data as found in the previous work. Recently, a technique for generating
distributed execution plans for a vertically partitioned and distributed XML document
is proposed [Kling et al. 2010], which considers XPath queries similar to queries stud-
ied in this work. An XPath query is decomposed into a number of local subqueries, each
for an involving site. Given a subquery, each site generates a local execution plan and
estimate the cost, and then the central node constructs a distributed execution plan

 



that determines how the local results are combined to produce the final query answer.
However, when dependency exists among the query results of different subqueries, the
subqueries may have to be evaluated sequentially.

Another active research area on distributed XML query processing has been
query language extensions that include communication and distribution primitives
for querying heterogeneous XML data sources. XRPC [Zhang and Boncz 2007] en-
hances the existing concept of XQuery functions with the Remote Procedure Call (RPC)
paradigm, thus querying heterogeneous XML data sources in multiple sites. Active
XML (AXML) [Abiteboul et al. 2008] allows us to embed in XML documents with calls
to Web or AXML service functions. The evaluation of a service call results in an XML
fragment, which is inserted into the original XML document, and gets reevaluated.
A lazy evaluation algorithm [Abiteboul et al. 2004] is proposed to efficiently evaluate
queries over AXML documents. Instead of materializing all the service calls embed-
ded in an AXML document, the proposed lazy algorithm identifies a tight superset of
service calls that should be materialized to answer a query. As observed by [Kling
et al. 2010], these approaches cater primarily to a data integration scenario. AXML,
for instance, distinguishes static data, that is, data that are relatively stable, from
dynamic data, that is, data that are updated frequently. There language extensions
usually need to explicitly specify the locations for query operators that need to be eval-
uated in remote sites. In contrast, we process standard XPath queries on data that are
arbitrarily partitioned and distributed, a setting different from the settings of those
extensions.

In addition to explicitly using URLs to reference data sources in an XML query,
Mutant query plans (MQPs) [Papadimos and Maier 2002] can refer to abstract resource
names (URNs). Mutant query plans are transferred as XML documents. Every site
maintains a local catalog that maps each URN to either a URL, or to a set of sites that
know more about the URN.

These distributed XPath query processing approaches are not capable of evaluating
distributed queries in parallel when the evaluation in a site depends on the results
from other sites. In contrast, the proposed partial evaluation techniques enable the
parallel evaluation of all subqueries over all fragments. It would be interesting to
explore the possibility of incorporating the idea of partial evaluation into the existing
proposals on distributed XML query processing.

There has been a large body of work on distributed query processing (see, e.g.,
Kossman [2000] for a nice survey). The focus has mostly been on techniques for min-
imizing communication cost, via hybrid shipping, two-phase optimization [Kossman
2000], replication [Abiteboul et al. 2003], and parallel query evaluation [DeWitt and
Gray 1992; Hsiao and DeWitt 1990]. This work aims to minimize both data movement
and communication steps by shipping residual functions (Boolean formula) rather
than data. This idea of partial evaluation may also be combined with recent tech-
niques developed for P2P systems [Crainiceanu et al. 2004; Ganesan et al. 2004; Halevy
et al. 2004; Jagadish et al. 2005]. In particular, Bonifati and Cuzzocrea [2006] studied
how to store and retrieve XML data over structured Peer-to-Peer (P2P) networks. A
document is split into various fragments, which are locally stored at peers based on
their path expressions, that is, the path reaching a fragment. The path expressions
of fragments are also used in evaluating XPath queries as we use annotation to filter
fragments. XPath annotation is also explored in Zhang et al. [2009] and Marian and
Siméon [2003] for query processing.

Centralized XPath query processing. A number of algorithms have been developed
for evaluating XPath queries in centralized systems. One line of work is to store and
query XML data using RDBMS [Florescu and Kossmann 1999; MonetDB; Pal et al.

 



2004; Schmidt et al. 2000; Zhang et al. 2001]. The main idea is to store XML data
as relations in RDBMS, and translate XML queries into SQL. These algorithms usu-
ally perform well, notably MonetDB [Boncz et al. 2006; Schmidt et al. 2000]. Another
approach is to develop native XML stores, [Al-Khalifa et al. 2002; Bruno et al. 2003;
Colen et al. 2002; Gottlob et al. 2002; Kanne et al. 2005; Kaushik et al. 2002; Koch
2003; Lu et al. 2005; Milo and Suciu 1999; Ramanan 2002; Zhang et al. 2004], which
have produced XPath optimizations and indexing techniques that are complementary
to this work. In view that XQuery is used to query not only XML data in databases,
but also in applications that process XML files, Marian and Siméon [2003] identifies
which parts of an input document are needed to answer an XQuery to overcome the
memory limitation. Partial evaluation provides another effective approach to process-
ing queries on XML files.

Also related to this work are partition-based methods [Huck et al. 1999; Kanne and
Moerkotte 2006b] for storing XML data. While those methods aim to reduce the I/O
cost, they often require to load some fragments multiple times when processing queries
(due to the interdependency between fragments), and hence, incur extra I/O overhead.
In contrast, based on partial evaluation, our centralized evaluation algorithms visit
each fragment at most twice, irrespective of how an XML tree is fragmented and stored.

Our centralized query evaluation algorithms leverage prior work on partitioning
XML data. Several partitioning methods are already in place. (a) In [Bordawekar and
Shmueli 2004], XML partitioning was treated as a traditional (NP-complete) clustering
problem, for which a pseudo-polynomial algorithm was developed [Lukes 1974]. (b) A
partitioning algorithm, called KM, was proposed, which processes the nodes of an XML
tree in a bottom-up fashion. Whenever the subtree under the current node is larger
than a given threshold value, the algorithm creates a fragment for the largest subtree
under the current node. A variation of KM, known as EKM, was proposed in Kanne
and Moerkotte [2006b] that adopts depth-first traversal of XML trees instead. (c) An
algorithm based on dynamic programming, referred to as GHDW, was given in Kanne
and Moerkotte [2006b], which aims to find a partition with the fewest fragments. (d)
Another approach [Kanne and Moerkotte 2006a], called RS, generates a subtree from
right to left whenever the size of the subtree is larger than a predefined threshold. We
adopted EKM in our experimental study.

9. CONCLUSIONS

We have proposed the first distributed evaluation algorithms for Boolean XPath
queries and for data-selecting XPath queries based on partial evaluation, with perfor-
mance guarantees on network traffic, total computation and communication steps. We
have also shown that partial evaluation can be readily incorporated into the MapRe-
duce framework, by presenting a MapReduce algorithm for processing Boolean XPath
queries using partial evaluation. In addition, we have developed centralized algo-
rithms for processing XPath queries on large XML documents, based on partial evalua-
tion. We have shown analytically and experimentally that our techniques are scalable
and efficient for handling complex XPath queries on large datasets. In light of these
results, we contend that partial evaluation is effective in processing XML queries in
both distributed systems and in centralized systems.

There is naturally much more to be done. First, we plan to extend partial evaluation
to processing other XML queries, such as queries with other axes and extensions of twig
queries with multiple returning nodes. It is known that XPath queries with axes for
upward traversals (i.e., parent axis and ancestor axis) can be converted to equivalent
XPath queries with downward traversals only (with child axis and descendant axis),
when the queries are evaluated at the root of any XML tree [Benedikt et al. 2005].
As a result, the algorithms developed in this work can be readily applied to XPath

 



queries with upward traversals. Furthermore, the algorithms can be extended to sup-
port sibling axes in the same framework, with only extra engineering work. To process
extensions of twig queries with multiple returning nodes, the proposed centralized al-
gorithms can be easily extended without extra overhead by treating the twig branches
as predicates. In the distributed setting, when the leaf nodes of twig patterns are found
on distinct sites, we can retrieve them by one more visit of each involved site. Second,
it is interesting to find out whether the technique can be used to support XML updates,
in the distributed setting or when large XML data is distributed across different disk
pages. Finally, it is possible to integrate partial evaluation with other optimization
techniques for XML query processing.
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